【題目】已知:ABC 內(nèi)接于⊙O,過點(diǎn) A 作⊙O 的切線交 CB 的延長線于點(diǎn) P,且∠PAB=45°

1)如圖 1,求∠ACB 的度數(shù);

2)如圖 2,AD 是⊙O 的直徑,AD BC 于點(diǎn) E,連接 CD,求證:AC CD

3)如圖 3 ,在(2)的條件下,當(dāng) BC 4CD 時,點(diǎn) FG 分別在 AP,AB 上,連接 BF,FG,∠BFG=P,且 BF=FG,若 AE=15,求 FG 的長.

【答案】1)∠ACB45°;(2)見解析;(3

【解析】

1)連接OA,OB,根據(jù)切線的性質(zhì)求出∠OAB=∠OBA45°,得到∠AOB90°,再根據(jù)圓周角定理可得答案;

2)作AMBCM,DNBCN,連接BD,易求,,然后證明ABM≌△BDN,得到AMBN,等量代換即可得證;

3)根據(jù)(2)中結(jié)論求出,然后證明AMCDNC,AMDN,根據(jù)相似三角形的性質(zhì)和平行線分線段成比例定理求得DEAD,進(jìn)而利用勾股定理求出CD,AC,然后即可求出AB的長,再證明PAB∽△PCA,求出PA,可得,過點(diǎn)GGKFB,過點(diǎn)FFHBG,設(shè)GK3b,利用三角函數(shù)及等腰三角形的性質(zhì)求出AHBH,然后列方程求出b值即可解決問題.

解:(1)連接OA,OB,則OAOB,

∴∠OAB=∠OBA,

PA是⊙O的切線,

∴∠PAO90°

∵∠PAB45°,

∴∠OAB=∠OBA45°,

∴∠AOB90°,

∴∠ACBAOB45°;

2)作AMBCMDNBCN,連接BD,

AD是⊙O的直徑,

∴∠ABD=∠ACD90°,

∵∠ACB45°,

∴∠CAM=∠BCD=∠CDN45°

,

∵∠ADB=∠ACB45°,

ABBD,

∵∠ABM+∠DBN90°=∠BDN+∠DBN,

∴∠ABM=∠BDN

又∵∠AMB=∠BND90°,

∴△ABM≌△BDNAAS),

AMBN,

;

3)如圖3,作AMBCM,DNBCN,由(2)可知:,

,

,即,

設(shè)CDx,則AC7x,

∵∠AMC=∠DNC90°,∠ACM=∠DCN45°,

∴△AMC∽△DNC

,

AMBC,DNBC,

AMDN,

,

,

RtACD中,AC2+CD2AD2,

,

解得:(負(fù)值已舍去),

,,,

∵△AMC是等腰直角三角形,

,

,

∵∠P=∠P,∠PAB=∠PCA45°,

∴△PAB∽△PCA,

,

設(shè)PB5a,則PA7a,

PA2PB·PC得:

解得:a0(舍去),

PA20,

,

,

過點(diǎn)GGKFB,過點(diǎn)FFHBG,

設(shè)GK3b,則BFFG5b

FK4b,

BKb,

,

BH,

,

∵∠PAB45°,

AHFH

,

解得:,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+ca≠0)的圖象如圖所示,在下列五個結(jié)論中:

2ab0;②abc0;③a+b+c0;④ab+c0;⑤4a+2b+c0,

錯誤的個數(shù)有(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】新型冠狀病毒肺炎是一種急性感染性肺炎,其病原體是一種先前未在人體中發(fā)現(xiàn)的新型冠狀病毒.市民出于防疫的需求,持續(xù)搶購防護(hù)用品.某藥店口罩每袋售價20元,醫(yī)用酒精每瓶售價15元.

1)該藥店第一周口罩的銷售袋數(shù)比醫(yī)用酒精的銷售瓶數(shù)多100,且第一周這兩種防護(hù)用品的總銷售額為9000元,求該藥店第一周銷售口罩多少袋?

2)由于疫情緊張,該藥店為了幫助大家共渡難關(guān),第二周口罩售價降低了,銷量比第一周增加了,醫(yī)用酒精的售價保持不變,銷量比第一周增加了,結(jié)果口罩和醫(yī)用酒精第二周的總銷售額比第一周增加了,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在甲、乙兩個不透明的布袋里,都裝有3個大小、材質(zhì)完全相同的小球,其中甲袋中的小球上分別標(biāo)有數(shù)字0,1,2;乙袋中的小球上分別標(biāo)有數(shù)字﹣1,﹣2,0.現(xiàn)從甲袋中任意摸出一個小球,記其標(biāo)有的數(shù)字為x,再從乙袋中任意摸出一個小球,記其標(biāo)有的數(shù)字為y,以此確定點(diǎn)M的坐標(biāo)(x,y).

(1)請你用畫樹狀圖或列表的方法,寫出點(diǎn)M所有可能的坐標(biāo);

(2)求點(diǎn)M(x,y)在函數(shù)y=﹣的圖象上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形 ABCD 的對角線 AC BD 交于點(diǎn) O,點(diǎn) E AD 上,且 DE=CD,連接 OE,BE, ABE ACB ,若 AE=2,則 OE 的長為___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象交于A(2,4),B(﹣4,n)兩點(diǎn).

(1)分別求出一次函數(shù)與反比例函數(shù)的表達(dá)式;

(2)過點(diǎn)BBCx軸,垂足為點(diǎn)C,連接AC,求ACB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把正方形紙片ABCD沿對邊上的兩點(diǎn)MN所在的直線對折,使點(diǎn)B落在邊CD上的點(diǎn)E處,折痕為MN,其中CECD.若AB的長為2,則MN的長為(

A.3B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的對角線相交于OEOD的中點(diǎn),DFACCE延長線于點(diǎn)F,連接AF

1)求證:四邊形AODF是菱形.

2)若∠AFC=90°,AB=2,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線yx24x+nx0)的圖象記為G1,將G1繞坐標(biāo)原點(diǎn)旋轉(zhuǎn)180°得到圖象G2,圖象G1G2合起來記為圖象G

1)若點(diǎn)P(﹣12)在圖象G上,求n的值.

2)當(dāng)n=﹣1時.

①若Qt1)在圖象G上,求t的值.

②當(dāng)kx≤3k3)時,圖象G對應(yīng)函數(shù)的最大值為5,最小值為﹣5,直接寫出k的取值范圍.

3)當(dāng)以A(﹣3,3)、B(﹣3,﹣1)、C2,﹣1)、D2,3)為頂點(diǎn)的矩形ABCD的邊與圖象G有且只有三個公共點(diǎn)時,直接寫出n的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案