【題目】已知:△ABC 內(nèi)接于⊙O,過點(diǎn) A 作⊙O 的切線交 CB 的延長線于點(diǎn) P,且∠PAB=45°.
(1)如圖 1,求∠ACB 的度數(shù);
(2)如圖 2,AD 是⊙O 的直徑,AD 交 BC 于點(diǎn) E,連接 CD,求證:AC CD ;
(3)如圖 3 ,在(2)的條件下,當(dāng) BC 4CD 時,點(diǎn) F,G 分別在 AP,AB 上,連接 BF,FG,∠BFG=∠P,且 BF=FG,若 AE=15,求 FG 的長.
【答案】(1)∠ACB=45°;(2)見解析;(3)
【解析】
(1)連接OA,OB,根據(jù)切線的性質(zhì)求出∠OAB=∠OBA=45°,得到∠AOB=90°,再根據(jù)圓周角定理可得答案;
(2)作AM⊥BC于M,DN⊥BC于N,連接BD,易求,,然后證明△ABM≌△BDN,得到AM=BN,等量代換即可得證;
(3)根據(jù)(2)中結(jié)論求出,然后證明△AMC∽△DNC,AM∥DN,根據(jù)相似三角形的性質(zhì)和平行線分線段成比例定理求得DE和AD,進(jìn)而利用勾股定理求出CD,AC,然后即可求出AB的長,再證明△PAB∽△PCA,求出PA,可得,過點(diǎn)G作GK⊥FB,過點(diǎn)F作FH⊥BG,設(shè)GK=3b,利用三角函數(shù)及等腰三角形的性質(zhì)求出AH和BH,然后列方程求出b值即可解決問題.
解:(1)連接OA,OB,則OA=OB,
∴∠OAB=∠OBA,
∵PA是⊙O的切線,
∴∠PAO=90°,
∵∠PAB=45°,
∴∠OAB=∠OBA=45°,
∴∠AOB=90°,
∴∠ACB=∠AOB=45°;
(2)作AM⊥BC于M,DN⊥BC于N,連接BD,
∵AD是⊙O的直徑,
∴∠ABD=∠ACD=90°,
∵∠ACB=45°,
∴∠CAM=∠BCD=∠CDN=45°,
∴,,
∵∠ADB=∠ACB=45°,
∴AB=BD,
∵∠ABM+∠DBN=90°=∠BDN+∠DBN,
∴∠ABM=∠BDN,
又∵∠AMB=∠BND=90°,
∴△ABM≌△BDN(AAS),
∴AM=BN,
∴;
(3)如圖3,作AM⊥BC于M,DN⊥BC于N,由(2)可知:,
∵,
∴,即,
設(shè)CD=x,則AC=7x,
∵∠AMC=∠DNC=90°,∠ACM=∠DCN=45°,
∴△AMC∽△DNC,
∴,
∵AM⊥BC,DN⊥BC,
∴AM∥DN,
∴,
∴,
∴,,
在Rt△ACD中,AC2+CD2=AD2,
∴,
解得:(負(fù)值已舍去),
∴,,,
∵△AMC是等腰直角三角形,
∴,
∴,
∴,
∵∠P=∠P,∠PAB=∠PCA=45°,
∴△PAB∽△PCA,
∴,
設(shè)PB=5a,則PA=7a,
由PA2=PB·PC得:,
解得:或a=0(舍去),
∴PA=20,
∴,
∴,
過點(diǎn)G作GK⊥FB,過點(diǎn)F作FH⊥BG,
設(shè)GK=3b,則BF=FG=5b,
∴FK=4b,
∴BK=b,
∴,
∴BH,
∴,
∵∠PAB=45°,
∴AH=FH=,
∴,
解得:,
∴.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,在下列五個結(jié)論中:
①2a﹣b<0;②abc<0;③a+b+c<0;④a﹣b+c>0;⑤4a+2b+c>0,
錯誤的個數(shù)有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】新型冠狀病毒肺炎是一種急性感染性肺炎,其病原體是一種先前未在人體中發(fā)現(xiàn)的新型冠狀病毒.市民出于防疫的需求,持續(xù)搶購防護(hù)用品.某藥店口罩每袋售價20元,醫(yī)用酒精每瓶售價15元.
(1)該藥店第一周口罩的銷售袋數(shù)比醫(yī)用酒精的銷售瓶數(shù)多100,且第一周這兩種防護(hù)用品的總銷售額為9000元,求該藥店第一周銷售口罩多少袋?
(2)由于疫情緊張,該藥店為了幫助大家共渡難關(guān),第二周口罩售價降低了,銷量比第一周增加了,醫(yī)用酒精的售價保持不變,銷量比第一周增加了,結(jié)果口罩和醫(yī)用酒精第二周的總銷售額比第一周增加了,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在甲、乙兩個不透明的布袋里,都裝有3個大小、材質(zhì)完全相同的小球,其中甲袋中的小球上分別標(biāo)有數(shù)字0,1,2;乙袋中的小球上分別標(biāo)有數(shù)字﹣1,﹣2,0.現(xiàn)從甲袋中任意摸出一個小球,記其標(biāo)有的數(shù)字為x,再從乙袋中任意摸出一個小球,記其標(biāo)有的數(shù)字為y,以此確定點(diǎn)M的坐標(biāo)(x,y).
(1)請你用畫樹狀圖或列表的方法,寫出點(diǎn)M所有可能的坐標(biāo);
(2)求點(diǎn)M(x,y)在函數(shù)y=﹣的圖象上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形 ABCD 的對角線 AC 與 BD 交于點(diǎn) O,點(diǎn) E 在 AD 上,且 DE=CD,連接 OE,BE, ABE ACB ,若 AE=2,則 OE 的長為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象交于A(2,4),B(﹣4,n)兩點(diǎn).
(1)分別求出一次函數(shù)與反比例函數(shù)的表達(dá)式;
(2)過點(diǎn)B作BC⊥x軸,垂足為點(diǎn)C,連接AC,求△ACB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把正方形紙片ABCD沿對邊上的兩點(diǎn)M、N所在的直線對折,使點(diǎn)B落在邊CD上的點(diǎn)E處,折痕為MN,其中CE=CD.若AB的長為2,則MN的長為( )
A.3B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的對角線相交于O,E是OD的中點(diǎn),DF∥AC交CE延長線于點(diǎn)F,連接AF.
(1)求證:四邊形AODF是菱形.
(2)若∠AFC=90°,AB=2,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線y=x2﹣4x+n(x>0)的圖象記為G1,將G1繞坐標(biāo)原點(diǎn)旋轉(zhuǎn)180°得到圖象G2,圖象G1和G2合起來記為圖象G.
(1)若點(diǎn)P(﹣1,2)在圖象G上,求n的值.
(2)當(dāng)n=﹣1時.
①若Q(t,1)在圖象G上,求t的值.
②當(dāng)k≤x≤3(k<3)時,圖象G對應(yīng)函數(shù)的最大值為5,最小值為﹣5,直接寫出k的取值范圍.
(3)當(dāng)以A(﹣3,3)、B(﹣3,﹣1)、C(2,﹣1)、D(2,3)為頂點(diǎn)的矩形ABCD的邊與圖象G有且只有三個公共點(diǎn)時,直接寫出n的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com