分析 (1)根據(jù)同角和等角的余角相等,可以證得到:∠HBD=∠DAC,利用ASA證明△HBD≌△CAD即可解決問題.
(2)方法類似(1).
解答 解:(1)圖1中,結論BH=AC,理由如下:
∵AD⊥BC,BE⊥AC,
∴∠BDH=∠ADC,∠BEC=90°,
∵∠ABC=45°,
∴∠BAD=90°-∠ABC=90°-45°=45°,
∴∠ABD=∠BAD,
∴DA=DB,
∵∠HBD+∠C=90°,∠DAC+∠C=90°,
∴∠HBD=∠DAC,
在△HBD和△CAD中,
$\left\{\begin{array}{l}{∠HBD=∠DAC}\\{BD=AC}\\{∠BDH=∠ADC}\end{array}\right.$,
∴△HBD≌△CAD,
∴BH=AC.
(2)圖2中,結論不變:BH=AC,理由如下:
∵AD⊥BC,BE⊥AC,
∴∠BDH=∠ADC,∠BEC=90°,
∵∠ABC=135°,
∴∠ABD=180°-∠ABC=45
∴∠BAD=90°-∠ABD=90°-45°=45°,
∴∠ABD=∠BAD,
∴DA=DB,
∵∠EBC+∠C=90°,∠DAC+∠C=90°,
∴∠EBC=∠DAC,
∵∠EBC=∠NBD,
∴∠BDH=∠CAD
在△HBD和△CAD中,
$\left\{\begin{array}{l}{∠HBD=∠DAC}\\{BD=AC}\\{∠BDH=∠ADC}\end{array}\right.$,
∴△HBD≌△CAD,
∴BH=AC.
點評 本題考查全等三角形的判定和性質、同角和等角的余角相等,尋找全等三角形是解題的關鍵.
科目:初中數(shù)學 來源: 題型:選擇題
A. | 2個 | B. | 3個 | C. | 4個 | D. | 5個 |
查看答案和解析>>
科目:初中數(shù)學 來源:2016-2017學年江蘇省句容市華陽片七年級下學期第一次月考數(shù)學試卷(解析版) 題型:判斷題
根據(jù)題意結合圖形填空:
已知:如圖,AD⊥BC于D,EG⊥BC與G,∠E=∠3,試問:AD是∠BAC的平分線嗎?若是,請說明理由.
答:是,理由如下:
∵AD⊥BC,EG⊥BC(___________)
∴∠4=∠5=90°(___________________________)
∴AD∥EG(________________________________)
∴∠1=∠E____________________________)
∠2=∠3(__________________________________)
∵∠E=∠3(________________)
∴________________( 等量代換 )
∴AD是∠BAC的平分線(_____________________)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com