【題目】在平行四邊形ABCD中,O為對(duì)角線BD的中點(diǎn),EF經(jīng)過點(diǎn)O分別交AD、BC于E、F兩點(diǎn),
(1)如圖1,求證:AE=CF;
(2)如圖2,若EF⊥BD,∠AEB=60°,請(qǐng)你直接寫出與DE(DE除外)相等的所有線段.
【答案】(1)證明見解析;(2)BE、BF、EF、DF.
【解析】
(1)根據(jù)平行四邊形的性質(zhì)以及全等三角形的判定方法證明出△EOD≌△FOB,得到DE=BF,可得結(jié)論:
(2)由(1)OE=OF,而利用對(duì)角線互相垂直的平行四邊形是菱形得出四邊形BFDE為菱形,由∠AEB=60°可得△BEF與△BEF為等邊三角形,從而得到結(jié)論.
(1)證明:四邊形ABCD是平行四邊形, BD為平行四邊形ABCD對(duì)角線BD
AD//BC,AD=BC,OB=OD.
∠OED=∠OFB, ∠EDO=∠FBO.
在△EOD與△FOB中,,
△EOD≌△FOB
ED=BF,
又 AD=BC
AE=CF.
(2)由(1)得△EOD≌△FOB
OE=OF,
由OB=OD,EF⊥BD
四邊形BFDE為菱形,
∠AEB=60°,∠BED=120°,且四邊形BFDE為菱形,
∠BEF=∠DEF=60°, △BEF與△BEF為等邊三角形,
與DE相等的所有線段為:BE、BF、EF、DF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,E是矩形ABCD邊AD上一點(diǎn),以DE為直徑向矩形內(nèi)部作半圓O,AB=4,OD=2,點(diǎn)G在矩形內(nèi)部,且∠GCB=30°,GC=2,過半圓。êc(diǎn)D,E)上動(dòng)點(diǎn)P作PF⊥AB于點(diǎn)F.當(dāng)△PFG是等邊三角形時(shí),PF的長(zhǎng)是___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算
(1)(x+y)2-2x(x+y); (2)(a+1)(a-1)-(a-1)2;
(3)先化簡(jiǎn),再求值:
(x+2y)(x-2y)-(2x3y-4x2y2)÷2xy,其中x=-3,.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,直線l:y=x﹣與x軸交于點(diǎn)B1,以OB1為邊長(zhǎng)作等邊△A1OB1,過點(diǎn)A1作A1B2平行于x軸,交直線l于點(diǎn)B2,以A1B2為邊長(zhǎng)作等邊△A2A1B2,過點(diǎn)A2作A1B2平行于x軸,交直線l于點(diǎn)B3,以A2B3為邊長(zhǎng)作等邊△A3A2B3,…,則等邊△A2017A2018B2018的邊長(zhǎng)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A、B兩地相距4km,上午8:00時(shí),亮亮從A地步行到B地,8:20時(shí)芳芳從B地出發(fā)騎自行車到A地,亮亮和芳芳兩人離A地的距離S(km)與亮亮所用時(shí)間t(min)之間的函數(shù)關(guān)系如圖所示,芳芳到達(dá)A地時(shí)間為( )
A. 8:30 B. 8:35 C. 8:40 D. 8:45
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,對(duì)角線BD的垂直平分線MN與AD相交于點(diǎn)M,與BD相交于點(diǎn)N,連接BM,DN.
(1)求證:四邊形BMDN是菱形;
(2)若AB=4,AD=8,求MD的長(zhǎng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某單位有職工200人,其中青年職工(20﹣35歲),中年職工(35﹣50歲),老年職工(50歲及以上)所占比例如扇形統(tǒng)計(jì)圖所示.
為了解該單位職工的健康情況,小張、小王和小李各自對(duì)單位職工進(jìn)行了抽樣調(diào)查,將收集的數(shù)據(jù)進(jìn)行了整理,繪制的統(tǒng)計(jì)表分別為表1、表2和表3.
表1:小張抽樣調(diào)查單位3名職工的健康指數(shù)
年齡 | 26 | 42 | 57 |
健康指數(shù) | 97 | 79 | 72 |
表2:小王抽樣調(diào)查單位10名職工的健康指數(shù)
年齡 | 23 | 25 | 26 | 32 | 33 | 37 | 39 | 42 | 48 | 52 |
健康指數(shù) | 93 | 89 | 90 | 83 | 79 | 75 | 80 | 69 | 68 | 60 |
表3:小李抽樣調(diào)查單位10名職工的健康指數(shù)
年齡 | 22 | 29 | 31 | 36 | 39 | 40 | 43 | 46 | 51 | 55 |
健康指數(shù) | 94 | 90 | 88 | 85 | 82 | 78 | 72 | 76 | 62 | 60 |
根據(jù)上述材料回答問題:
小張、小王和小李三人中,誰(shuí)的抽樣調(diào)查的數(shù)據(jù)能夠較好地反映出該單位職工健康情況,并簡(jiǎn)要說明其他兩位同學(xué)抽樣調(diào)查的不足之處.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=x2﹣4x﹣1頂點(diǎn)為D,與x軸相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C.
(1)求這條拋物線的頂點(diǎn)D的坐標(biāo);
(2)經(jīng)過點(diǎn)(0,4)且與x軸平行的直線與拋物線y=x2﹣4x﹣1相交于M、N兩點(diǎn)(M在N的左側(cè)),以MN為直徑作⊙P,過點(diǎn)D作⊙P的切線,切點(diǎn)為E,求點(diǎn)DE的長(zhǎng);
(3)上下平移(2)中的直線MN,以MN為直徑的⊙P能否與x軸相切?如果能夠,求出⊙P的半徑;如果不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合與探究
如圖1,在平面直角坐標(biāo)系中,菱形的頂點(diǎn)在軸上,反比例函數(shù)()的圖象經(jīng)過點(diǎn),并與線段交于點(diǎn),反比例函數(shù)()的圖象經(jīng)過點(diǎn),交軸于點(diǎn).已知.
(1)求點(diǎn)的坐標(biāo)及反比例函數(shù)()的表達(dá)式;
(2)直接寫出點(diǎn)的坐標(biāo) ;
(3)如圖2,點(diǎn)是軸正半軸上的一個(gè)動(dòng)點(diǎn),過點(diǎn)作軸的垂線,分別交反比例函數(shù)()與反比例函數(shù)()的圖象于點(diǎn),設(shè)點(diǎn)的坐標(biāo)為
①當(dāng)時(shí),求的值;
②在點(diǎn)運(yùn)動(dòng)過程中,是否存在某一時(shí)刻,使?若存在,直接寫出點(diǎn)的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com