【題目】閱讀以下材料:有這樣一個問題:關(guān)于x的一元二次方程ax2+bx+c0a0)有兩個不相等的且非零的實數(shù)根.探究ab,c滿足的條件.

小明根據(jù)學習函數(shù)的經(jīng)驗,認為可以從二次函數(shù)的角度看一元二次方程,下面是小明的探究過程:

①設(shè)一元二次方程ax2+bx+c0a0)對應(yīng)的二次函數(shù)為yax2+bx+ca0);

②借助二次函數(shù)圖象,可以得到相應(yīng)的一元二次中a,bc滿足的條件,列表如下:

方程根的幾何意義:

1)參考小明的做法,把上述表格補充完整;

2)若一元二次方程mx2﹣(2m+3x4m0有一個負實根,一個正實根,且負實根大于﹣1,求實數(shù)m的取值范圍.

【答案】1)補充表格見解析;(20m3

【解析】

1)由二次函數(shù)與一元二次方程的關(guān)系以及二次函數(shù)與系數(shù)的關(guān)系容易得出答案;

2)分m0m0兩種情況,根據(jù)題意結(jié)合圖象可得x=-1y的取值范圍,從而得出關(guān)于m的不等式組,解不等式組即可.

1)補全表格如下:

2)設(shè)一元二次方程mx2﹣(2m+3x4m0對應(yīng)的二次函數(shù)為:ymx2﹣(2m+3x4m

∵一元二次方程mx2﹣(2m+3x4m0有一個負實根,一個正實根,且負實根大于﹣1

①當m0時,x=﹣1時,y0,

m+2m+3-4m0

解得:m3,

0m3

②當m0時,x=﹣1時,y0

m+2m+3-4m0

解得:m3(舍棄)

m的取值范圍是0m3

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在矩形ABCD中,AB=12,P是邊AB上一點,把PBC沿直線PC折疊,頂點B的對應(yīng)點是點G,過點BBECG,垂足為E且在AD上,BEPC于點F.

(1)如圖1,若點EAD的中點,求證:AEB≌△DEC;

(2)如圖2,①求證:BP=BF;

②當AD=25,且AE<DE時,求cosPCB的值;

③當BP=9時,求BEEF的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中國古代三國時期的數(shù)學家趙爽,創(chuàng)作了一幅勾股弦方圖,通過數(shù)形結(jié)合,給出了勾股定理的詳細證明如圖,在勾股弦方圖中,以弦為邊長得到的正方形ABCD是由4個全等的直角三角形和中間的小正方形組成,這一圖形被稱作趙爽弦圖張?zhí)焱瑢W要用細塑料棒制作趙爽弦圖,若正方形ABCD與正方形EFCH的面積分別為16949,則所用細塑料棒的長度為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,已知點P0的坐標為(1,0),將線段OP0按照逆時針方向旋轉(zhuǎn)45°,再將其長度伸長為OP02倍,得到線段OP1;又將線段OP1按照逆時針方向旋轉(zhuǎn)45°,長度伸長為OP12倍,得到線段OP2;如此下去,得到線段OP3,OP4,…,OPnn為正整數(shù)),則點P8的坐標為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一個矩形紙片OACB,將該紙片放置在平面直角坐標系中,點A11,0),點B06),點PBC邊上的動點(點P不與點BC重合),經(jīng)過點OP折疊該紙片,得點B′和折痕OP.設(shè)BP=t

)如圖,當BOP=300時,求點P的坐標;

)如圖,經(jīng)過點P再次折疊紙片,使點C落在直線PB′上,得點C′和折痕PQ,若AQ=m,試用含有t的式子表示m;

)在()的條件下,當點C′恰好落在邊OA上時,求點P的坐標(直接寫出結(jié)果即可).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】以下說法正確的有(  )

①正八邊形的每個內(nèi)角都是135°;

②反比例函數(shù)y=,當x0時,yx的增大而增大;

③長度等于半徑的弦所對的圓周角為30°;

分式方程的解為;

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,O為坐標原點,點A的坐標為(0,4),點B的坐標為(4,0),點C的坐標為(﹣4,0),點PAB上,連結(jié)CPy軸交于點D,連結(jié)BD.過PD,B三點作⊙Qy軸的另一個交點為E,延長DQ交⊙Q于點F,連結(jié)EF,BF

1)求直線AB的函數(shù)解析式;

2)求證:∠BDE=ADP;

3)設(shè)DE=xDF=y.請求出y關(guān)于x的函數(shù)解析式;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在中,ADCE分別平分.求證:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB為⊙O的直徑,PA與⊙O相切于A點,點C是⊙O上的一點,且PC=PA

1)求證:PC是⊙O的切線;

2)若∠BAC=45°AB=4,求PC的長.

查看答案和解析>>

同步練習冊答案