【題目】一次函數(shù)y1x+m的圖象與反比例函數(shù)y2的圖象相交于A(﹣1,﹣3)和點B,且與x軸交于點C

1)求mk的值.

2)求點B、C坐標(biāo),并結(jié)合圖形直接寫出不等式0x+m的解集.

【答案】1m=-2,k=3;(2B3,1),C2,0),2x3

【解析】

1)根據(jù)待定系數(shù)法此題得解;

2)兩解析式聯(lián)立,解方程組求得B的坐標(biāo),然后根據(jù)圖象即可找出不等式的解集.

解:(1)將A(﹣1,﹣3)代入y1x+m得﹣1+m=﹣3

解得m=﹣2,

∴一次函數(shù)y1x-2

A(﹣1,﹣3)代入y2,

解得:k=﹣1×(﹣3)=3

∴反比例函數(shù)解析式為y2

2)當(dāng)時,解得

,

B3,1),

觀察函數(shù)圖象發(fā)現(xiàn):

在第一象限,當(dāng)0x3時,一次函數(shù)圖象在反比例函數(shù)圖象下方,

但當(dāng)時,

∴不等式0x+m的解集是2x3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AD=2,CD=1,連接AC,以對角線AC為邊,按逆時針方向作矩形ABCD的相似矩形AB1C1C,再連接AC1,以對角線AC1為邊作矩形AB1C1C的相似矩形AB2C2C1,......,按此規(guī)律繼續(xù)下去,則矩形AB2019C2019C2018的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個頂點的坐標(biāo)分別是A(﹣1,5)、B(﹣2,0)、C(﹣4,3).

1)請在圖中畫出△ABC關(guān)于y軸對稱的圖形△A1B1C1

2)以點O為位似中心,將△ABC縮小為原來的,得到△A2B2C2,請在圖中y軸的左側(cè)畫出△A2B2C2,并求出△A2B2C2的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】商用套餐正式上線.某移動營業(yè)廳為了吸引用戶,設(shè)計了,兩個可以自由轉(zhuǎn)動的轉(zhuǎn)盤(如圖),轉(zhuǎn)盤被等分為個扇形,分別為紅色和黃色;轉(zhuǎn)盤被等分為個扇形,分別為黃色、紅色、藍(lán)色,指針固定不動.營業(yè)廳規(guī)定,每位新用戶可分別轉(zhuǎn)動兩個轉(zhuǎn)盤各一次,轉(zhuǎn)盤停止后,若指針?biāo)竻^(qū)域顏色相同,則該用戶可免費領(lǐng)取通用流量(若指針停在分割線上,則視其指向分割線右側(cè)的扇形).小王辦理業(yè)務(wù)獲得一次轉(zhuǎn)轉(zhuǎn)盤的機(jī)會,求他能免費領(lǐng)取通用流量的概率.

A B

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD邊長為6,∠BAD120°,點E、F分別在ABAD上且BEAF,則EF的最小值為_____,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB⊙O的直徑,PD⊙O于點C,交AB的延長線于點D,且∠D=2∠CAD

1)求∠D的度數(shù);

2)若CD=2,求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點A、B、C坐標(biāo)分別為(0,1)、(0,5)、(3,0),D是平面內(nèi)一點,且∠ADB45°,則線段CD的最大值是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1是一臺實物投影儀,圖2是它的示意圖,折線OABC表示支架,支架的一部分OAB是固定的,另一部分BC是可旋轉(zhuǎn)的,線段CD表示投影探頭,OM表示水平桌面,AOOM,垂足為點O,且AO7cm,∠BAO160°,BCOM,CD8cm

將圖2中的BC繞點B向下旋轉(zhuǎn)45°,使得BCD落在BCD′的位置(如圖3所示),此時CD′⊥OMAD′∥OM,AD′=16cm,求點B到水平桌面OM的距離,(參考數(shù)據(jù):sin70°≈0.94cos70°≈0.34,cot70°≈0.36,結(jié)果精確到1cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y= -x+b的圖象與反比例函數(shù)x>0)的圖象交于點Am , 3)和B3 , n .AACx軸于C,交OBE,且EB = 2EO

1)求一次函數(shù)和反比例函數(shù)解析式

2)點P是線段AB上異于AB的一點,過PPDx軸于D,若四邊形APDC面積為S,求S的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案