精英家教網 > 初中數學 > 題目詳情

【題目】閱讀材料并把解答過程補充完整.

問題:在關于x,y的二元一次方程組中,x>1,y<0,求a的取值范圍.

在關于x,y的二元一次方程組中,利用參數a的代數式表示x,y,然后根據x>1,y<0列出關于參數a的不等式組即可求得a的取值范圍.

解:由,解得,又因為x>1,y<0,所以,解得________

請你按照上述方法,完成下列問題:

已知x-y=4,x>3,y<1,求x+y的取值范圍.

【答案】,

【解析】

分別求出每一個不等式的解集,根據口訣:同大取大、同小取小、大小小大中間找、大大小小無解了確定不等式組的解集;仿照例子即可求出x+y的取值范圍.

解不等式1,得:a0,

解不等式0,得:a2,

0a2

解:設構成方程組解得:

,

2a6,

2x+y6

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,對稱軸為直線x1的拋物線經過A(﹣1,0)、C0,3)兩點,與x軸的另一個交點為B,點Dy軸上,且OB3OD

1)求該拋物線的表達式;

2)設該拋物線上的一個動點P的橫坐標為t

①當0t3時,求四邊形CDBP的面積St的函數關系式,并求出S的最大值;

②點Q在直線BC上,若以CD為邊,點C、D、QP為頂點的四邊形是平行四邊形,請求出所有符合條件的點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD中,∠A=C=90°BE,DF分別是∠ABCADC的平分線.

11與∠2有什么關系,為什么?

2BEDF有什么關系?請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,已知AB=BC=CA=4cm,AD⊥BC于D,點P、Q分別從B、C兩點同時出發(fā),其中點P沿BC向終點C運動,速度為1cm/s;點Q沿CA、AB向終點B運動,速度為2cm/s,設它們運動的時間為x(s).

(1)求x為何值時,PQ⊥AC;

(2)設△PQD的面積為y(cm2),當0<x<2時,求y與x的函數關系式;

(3)當0<x<2時,求證:AD平分△PQD的面積;

(4)探索以PQ為直徑的圓與AC的位置關系,請寫出相應位置關系的x的取值范圍(不要求寫出過程).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,對于任意三點A,BC矩面積,給出如下定義:水平底”a:任意兩點橫坐標差的最大值,鉛垂高”h:任意兩點縱坐標差的最大值,則矩面積”S=ah.例如,三點坐標分別為A0,3),B-34),C1-2),則水平底”a=4鉛垂高”h=6,矩面積”S=ah=24.若D22),E-2,-1),F3,m)三點的矩面積20,則m的值為______

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,的直徑,

(1)求證:的切線;

(2)若點的中點,連接于點,當,時,求的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,點AB,C的坐標分別為Aa3),Bb6),Cm+61),且ab滿足

1)請用含m的式子表示A,B兩點的坐標;

2)如圖,點A在第二象限,點B在第一象限,連接A、B、C、O四點;

①若點By軸的距離不小于點Ay軸距離的2倍,試求m的取值范圍;

②若三角形AOC的面積等于三角形ABC面積的,求實數m的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線MN∥PQ,直線AB分別與MN,PQ相交于點A,B.小宇同學利用尺規(guī)按以下步驟作圖:以點A為圓心,以任意長為半徑作弧交AN于點C,交AB于點D;②分別以C,D為圓心,以大于CD長為半徑作弧,兩弧在∠NAB內交于點E;③作射線AEPQ于點F.若AB=2,∠ABP=60°,則線段AF的長為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】ABC中,以B為圓心,BC長為半徑畫弧,分別交AC、AB于D、E兩點,并連接BD、DE,若A=30°,AB=AC,則∠BDE=______

查看答案和解析>>

同步練習冊答案