【題目】已知等邊△ABC,點D為BC上一點,連接AD.
圖1 圖2
(1)若點E是AC上一點,且CE=BD,連接BE,BE與AD的交點為點P,在圖(1)中根據(jù)題意補全圖形,直接寫出∠APE的大。
(2)將AD繞點A逆時針旋轉(zhuǎn)120°,得到AF,連接BF交AC于點Q,在圖(2)中根據(jù)題意補全圖形,用等式表示線段AQ和CD的數(shù)量關(guān)系,并證明.
【答案】(1)補全圖形見解析. ∠APE=60°;(2)補全圖形見解析.,證明見解析.
【解析】
(1)根據(jù)題意,按照要求補全圖形即可;
(2)先補全圖形,然后首先證明△ABD≌△BEC得出∠BAD=∠CBE,之后通過一系列證明得出△AQF≌△EQB,最后進一步從而得出即可.
(1)補全圖形如下,其中 ∠APE=60°,
(2)補全圖形.
證明:在△ABD和△BEC中,
∴△ABD≌△BEC(SAS)
∴∠BAD=∠CBE.
∵∠APE是△ABP的一個外角,
∴∠APE=∠BAD+∠ABP=∠CBE+∠ABP=∠ABC=60°.
∵AF是由AD繞點A逆時針旋轉(zhuǎn)120°得到,
∴AF=AD,∠DAF=120°.
∵∠APE=60°,
∴∠APE+∠DAP=180°.
∴AF∥BE
∴∠1=∠2
∵△ABD≌△BEC,
∴AD=BE.
∴AF=BE.
在△AQF和△EQB中,
∴△AQF≌△EQB(AAS)
∴AQ=QE
∴
∵AE=AC-CE,CD=BC-BD,
且AE=BC,CD=BD.
∴AE=CD..
∴
科目:初中數(shù)學 來源: 題型:
【題目】某商場將進貨價為30元的臺燈以40元的價格售出,平均每月能售出600個,經(jīng)調(diào)查表明,這種臺燈的售價每上漲1元,其銷量就減少10個,市場規(guī)定此臺燈售價不得超過60元.
(1)為了實現(xiàn)銷售這種臺燈平均每月10000元的銷售利潤,售價應定為多少元?
(2)若商場要獲得最大利潤,則應上漲多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在Rt△ABC中,∠B=90°,點F在邊BC上,tan∠FAC=,點E為斜邊AC上一動點,ED⊥AB于點D,交AF于點G.
(1)如圖1,求證:;
(2)如圖1,若AB=2DE,求證:BF+AD=2GE;
(3)如圖2,若AB=DE=4,AD=3,直接寫出FC的長 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某產(chǎn)品每件成本10元,試銷階段每件產(chǎn)品的銷售單價x(元/件)與每天銷售量y(件)之間的關(guān)系如下表.
x(元/件) | 15 | 18 | 20 | 22 | … |
y(件) | 250 | 220 | 200 | 180 | … |
(1)直接寫出:y與x之間的函數(shù)關(guān)系 ;
(2)按照這樣的銷售規(guī)律,設(shè)每天銷售利潤為w(元)即(銷售單價﹣成本價)x每天銷售量;求出w(元)與銷售單價x(元/件)之間的函數(shù)關(guān)系;
(3)銷售單價定為多少元時,每天的銷售利潤最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】課堂上同學們借助兩個直角三角形紙板進行探究,直角三角形紙板如圖所示,分別為Rt△ABC和Rt△DEF,其中∠A=∠D=90°,AC=DE=2cm. 當邊AC與DE重合,且邊AB和DF在同一條直線上時:
(1)在下邊的圖形中,畫出所有符合題意的圖形;
(2)求BF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑, BC交⊙O于點D,E是的中點,連接AE交BC于點F,∠ACB =2∠EAB.
(1)求證:AC是⊙O的切線;
(2)若,,求BF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在坐標系中放置一菱形,已知,,先將菱形沿軸的正方向無滑動翻轉(zhuǎn),每次翻轉(zhuǎn),連續(xù)翻轉(zhuǎn)2019次,點的落點依次為,,,…,則的坐標為__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某電視臺的一檔娛樂性節(jié)目中,在游戲PK環(huán)節(jié),為了隨機分選游戲雙方的組員,主持人設(shè)計了以下游戲:用不透明的白布包住三根顏色長短相同的細繩AA1、BB1、CC1,只露出它們的頭和尾(如圖所示),由甲、乙兩位嘉賓分別從白布兩端各選一根細繩,并拉出,若兩人選中同一根細繩,則兩人同隊,否則互為反方隊員.
(1)若甲嘉賓從中任意選擇一根細繩拉出,求他恰好抽出細繩AA1的概率;
(2)請用畫樹狀圖法或列表法,求甲、乙兩位嘉賓能分為同隊的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB=BC=2,∠ABC=120°,△CDE為等邊三角形,CD=2,連接AD,M為AD中點.
(1)如圖1,當B,C,E三點共線時,請畫出△EDM關(guān)于點M的中心對稱圖形,并證明BM⊥ME;
(2)如圖2,當A,C,E三點共線時,求BM的長;
(3)如圖3,取BE中點N,連MN,將△CDE繞點C旋轉(zhuǎn),直接寫出旋轉(zhuǎn)過程中線段MN的取值范圍是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com