【題目】如圖,在ABC中,ABAC,∠BAC30°,以AC為腰在其右側(cè)作ACD,使ADAC,連接BD,設(shè)∠CAD.若60°,CD2

1)求BD的長.

2)設(shè)∠DBC,請你猜想的數(shù)量關(guān)系,并說明理由.

【答案】(1)BD=2;(2=,理由見解析

【解析】

1)根據(jù)等邊三角形的性質(zhì)和含30°的直角三角形的性質(zhì)解答即可;

2)根據(jù)等腰三角形的性質(zhì)和角之間的關(guān)系證明即可.

(1) 60°,ACAD

ACD為等邊三角形,

AD DC 2

BAC30°,

BAD90°

AB=AC=AD

BD=2

(2) =

證明:∵ AB=AC,∠BAC=30°,

ABC=75°

AB=AD,

ABD==75°

=75°(75°)=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,甲和乙同時從學(xué)校放學(xué),兩人以各自送度勻速步行回家,甲的家在學(xué)校的正西方向,乙的家在學(xué)校的正東方向,乙家離學(xué)校的距離比甲家離學(xué)校的距離遠3900米,甲準備一回家就開始做什業(yè),打開書包時發(fā)現(xiàn)錯拿了乙的練習(xí)冊.于是立即步去追乙,終于在途中追上了乙并交還了練習(xí)冊,然后再以先前的速度步行回家,(甲在家中耽擱和交還作業(yè)的時間忽略不計)結(jié)果甲比乙晚回到家中,如圖是兩人之間的距離y米與他們從學(xué)校出發(fā)的時間x分鐘的函數(shù)關(guān)系圖,則甲的家和乙的家相距_____米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙3名學(xué)生各自隨機選擇到A、B 2個書店購書.

1)求甲、乙2名學(xué)生在不同書店購書的概率;

2)求甲、乙、丙3名學(xué)生在同一書店購書的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=AC,BC=BD,若,則______.(用含的代數(shù)式).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用一個直徑為10cm的玻璃球和一個圓錐形的牛皮紙紙帽制作一個不倒翁玩具,不倒翁的軸截面如圖所示,圓錐的母線AB與⊙O相切于點B,不倒翁的頂點A到桌面L的最大距離是18cm.若將圓錐形紙帽表面全涂上顏色,則涂色部分的面積為_____cm2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:

(1)

(2)

(3)8x2-4(2x2+3x-1)

(4) 5x2-2(3y2-5x2)+(-4y2+7xy)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A、B為x軸上兩點,C、D為y軸上的兩點,經(jīng)

過點A、C、B的拋物線的一部分C1與經(jīng)過點A、D、B的拋物線的一部分C2組合成一條封閉曲線,我們把這條封

閉曲線稱為“蛋線”.已知點C的坐標(biāo)為(0,),點M是拋物線C2<0)的頂點.

(1)求A、B兩點的坐標(biāo);

(2)“蛋線”在第四象限上是否存在一點P,使得PBC的面積最大?若存在,求出PBC面積的最大值;若不存在,請說明理由;

(3)當(dāng)BDM為直角三角形時,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,,連結(jié)AC,過點C作直線lAB,點P是直線l上的一個動點,直線PA與⊙O交于另一點D,連結(jié)CD,設(shè)直線PB與直線AC交于點E.

(1)求∠BAC的度數(shù);

(2)當(dāng)點DAB上方,且CDBP時,求證:PC=AC;

(3)在點P的運動過程中

①當(dāng)點A在線段PB的中垂線上或點B在線段PA的中垂線上時,求出所有滿足條件的∠ACD的度數(shù);

②設(shè)⊙O的半徑為6,點E到直線l的距離為3,連結(jié)BD,DE,直接寫出BDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,AB=AC,ADBC邊的中線,以AC為邊作等邊△ACEBEAD相交于點P,點FBE上,且PF=PA,連接AF下列四個結(jié)論:①ADBC;ABE=∠AEB;APE=60°AEF≌△ABP,其中正確結(jié)論的個數(shù)是(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案