【題目】如圖,在四邊形ABCD中,AB=AC,BC=BD,若,則______.(用含的代數(shù)式).
【答案】
【解析】
延長DA到E點,使AE=AC,連接BE,易證∠EAB=∠BAC,可得△AEB≌△ABC,則∠E=∠ACB= ,BE=BC=BD,則∠BDE=∠E= ,可證∠DBC=∠DAC=4-180°,即可求得∠BCD的度數(shù).
延長DA到E點,使AE=AC,連接BE
∵AB=AC,
∴∠ACB =∠ABC = ,∠BAD=2
∴∠BAC =180°-2,∠EAB=180°-2
又AB=AB
∴△AEB≌△ABC(SAS)
∴∠E=∠ACB=,BE=BC=BD
∴∠BDE=∠E=
∴∠DBC=∠DAC=∠BAD-∠BAC=2-(180°-2)= 4-180°
∴∠BCD=
故答案為:
科目:初中數(shù)學 來源: 題型:
【題目】某市正在進行商業(yè)街改造,商業(yè)街起點在古民居P的南偏西60°方向上的A處,現(xiàn)已改造至古民居P南偏西30°方向上的B處,A與B相距150m,且B在A的正東方向.為不破壞古民居的風貌,按照有關規(guī)定,在古民居周圍100m以內(nèi)不得修建現(xiàn)代化商業(yè)街.若工程隊繼續(xù)向正東方向修建200m商業(yè)街到C處,則對于從B到C的商業(yè)街改造是否違反有關規(guī)定?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O經(jīng)過點B,D,E,BD是⊙O的直徑,∠C=90°,BE平分∠ABC.
(1)證明:直線AC是⊙O的切線.
(2)當AE=4,AD=2時,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知一次函數(shù)的圖象經(jīng)過點P(0,-2),且與兩條坐標軸截得的直角三角形的面積為6,求這個一次函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面材料:
在數(shù)學課上,老師請同學思考如下問題:如圖1,我們把一個四邊形ABCD的四邊中點E,F(xiàn),G,H依次連接起來得到的四邊形EFGH是平行四邊形嗎?
小敏在思考問題時,有如下思路:連接AC.
結合小敏的思路作答:
(1)若只改變圖1中四邊形ABCD的形狀(如圖2),則四邊形EFGH還是平行四邊形嗎?說明理由,參考小敏思考問題的方法解決一下問題;
(2)如圖2,在(1)的條件下,若連接AC,BD.
①當AC與BD滿足什么條件時,四邊形EFGH是菱形,寫出結論并證明;
②當AC與BD滿足什么條件時,四邊形EFGH是矩形,直接寫出結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩輛汽車沿同一路線從A地前往B地,甲車以a千米/時的速度勻速行駛,途中出現(xiàn)故障后停車維修,修好后以2a千米/時的速度繼續(xù)行駛;乙車在甲車出發(fā)2小時后勻速前往B地,比甲車早30分鐘到達.到達B地后,乙車按原速度返回A地,甲車以2a千米/時的速度返回A地.設甲、乙兩車與A地相距s(千米),甲車離開A地的時間為t(小時),s與t之間的函數(shù)圖象如圖所示.下列說法:①a=40;②甲車維修所用時間為1小時;③兩車在途中第二次相遇時t的值為5.25;④當t=3時,兩車相距40千米,其中不正確的個數(shù)為( 。
A. 0個 B. 1個 C. 2個 D. 3個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=30°,以AC為腰在其右側作△ACD,使AD=AC,連接BD,設∠CAD=.若=60°,CD=2,
(1)求BD的長.
(2)設∠DBC=,請你猜想與的數(shù)量關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】請你用學習“一次函數(shù)”時積累的經(jīng)驗和方法解決下列問題:
(1)在平面直角坐標系中,畫出函數(shù)y=|x|的圖象:
①列表填空:
x | … | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … |
y | … |
|
|
|
|
|
|
| … |
②描點、連線,畫出y=|x|的圖象;
(2)結合所畫函數(shù)圖象,寫出y=|x|兩條不同類型的性質;
(3)結合所畫函數(shù)圖象,求方程|x|﹣2x﹣1=0的解.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,ABCD的對角線AC、BD交于點O,AE平分∠BAD交BC于點E,且∠ADC=60°,AB=BC,連接OE.下列結論:①∠CAD=30°;②SABCD=ABAC;③OB=AB;④OE=BC,成立的個數(shù)有( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com