【題目】如圖,AD是⊙O的切線,切點(diǎn)為A,AB是⊙O的弦.過(guò)點(diǎn)B作BC∥AD,交⊙O于點(diǎn)C,連接AC,過(guò)點(diǎn)C作CD∥AB,交AD于點(diǎn)D.連接AO并延長(zhǎng)交BC于點(diǎn)M,交過(guò)點(diǎn)C的直線于點(diǎn)P,且∠BCP=∠ACD.
(1)判斷直線PC與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若AB=9,BC=6.求PC的長(zhǎng).
【答案】
(1)解:PC與圓O相切,理由為:
過(guò)C點(diǎn)作直徑CE,連接EB,如圖,
∵CE為直徑,
∴∠EBC=90°,即∠E+∠BCE=90°,
∵AB∥DC,
∴∠ACD=∠BAC,
∵∠BAC=∠E,∠BCP=∠ACD.
∴∠E=∠BCP,
∴∠BCP+∠BCE=90°,即∠PCE=90°,
∴CE⊥PC,
∴PC與圓O相切;
(2)解:∵AD是⊙O的切線,切點(diǎn)為A,
∴OA⊥AD,
∵BC∥AD,
∴AM⊥BC,
∴BM=CM= BC=3,
∴AC=AB=9,
在Rt△AMC中,AM= =6 ,
設(shè)⊙O的半徑為r,則OC=r,OM=AM﹣r=6 ﹣r,
在Rt△OCM中,OM2+CM2=OC2,即32+(6 ﹣r)2=r2,解得r= ,
∴CE=2r= ,OM=6 ﹣ = ,
∴BE=2OM= ,
∵∠E=∠MCP,
∴Rt△PCM∽R(shí)t△CEB,
∴ = ,
即 = ,
∴PC= .
【解析】(1)過(guò)C點(diǎn)作直徑CE,連接EB,由CE為直徑得∠E+∠BCE=90°,由AB∥DC得∠ACD=∠BAC,而∠BAC=∠E,∠BCP=∠ACD,所以∠E=∠BCP,于是∠BCP+∠BCE=90°,然后根據(jù)切線的判斷得到結(jié)論;(2)根據(jù)切線的性質(zhì)得到OA⊥AD,而B(niǎo)C∥AD,則AM⊥BC,根據(jù)垂徑定理有BM=CM= BC=3,根據(jù)等腰三角形性質(zhì)有AC=AB=9,在Rt△AMC中根據(jù)勾股定理計(jì)算出AM=6 ;設(shè)⊙O的半徑為r,則OC=r,OM=AM﹣r=6 ﹣r,在Rt△OCM中,根據(jù)勾股定理計(jì)算出r= ,則CE=2r= ,OM=6 ﹣ = ,利用中位線性質(zhì)得BE=2OM= ,然后判斷Rt△PCM∽R(shí)t△CEB,根據(jù)相似比可計(jì)算出PC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB是⊙O的弦,OB=2,∠B=30°,C是弦AB上的任意一點(diǎn) (不與點(diǎn)A、B重合),連接CO并延長(zhǎng)CO交⊙O于點(diǎn)D,連接AD.
(1)弦長(zhǎng)AB等于(結(jié)果保留根號(hào));
(2)當(dāng)∠D=20°時(shí),求∠BOD的度數(shù);
(3)當(dāng)AC的長(zhǎng)度為多少時(shí),以A、C、D為頂點(diǎn)的三角形與以B、C、0為頂點(diǎn)的三角形相似?請(qǐng)寫(xiě)出解答過(guò)程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB與CD相交于O,OE⊥AB,OF⊥CD。
(1)圖中與∠COE互補(bǔ)的角是___________________; (把符合條件的角都寫(xiě)出來(lái))
(2)如果∠AOC =∠EOF ,求∠AOC的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A、B均在函數(shù)y= (k>0,x>0)的圖象上,⊙A與x軸相切,⊙B與y軸相切.若點(diǎn)B的坐標(biāo)為(1,6),⊙A的半徑是⊙B的半徑的2倍,則點(diǎn)A的坐標(biāo)為( )
A.(2,2)
B.(2,3)
C.(3,2)
D.(4, )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩校分別有一男一女共4名教師報(bào)名到農(nóng)村中學(xué)支教.
(1)若從甲、乙兩校報(bào)名的教師中分別隨機(jī)選1名,則所選的2名教師性別相同的概率是 .
(2)若從報(bào)名的4名教師中隨機(jī)選2名,用列表或畫(huà)樹(shù)狀圖的方法求出這2名教師來(lái)自同一所學(xué)校的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(0,1),直線l:y=﹣1.動(dòng)點(diǎn)P滿足條件:
①P在這個(gè)平面直角坐標(biāo)系中;
②P到A的距離和P到l的距離相等;
(1)求點(diǎn)P所經(jīng)過(guò)的軌跡方程,并在網(wǎng)格中繪制這個(gè)圖象.(提示:平面直角坐標(biāo)系中兩點(diǎn)之間的距離可以通過(guò)勾股定理來(lái)求得)
(2)已知直線y=kx+1,小明同學(xué)說(shuō),這條直線與(1)中所繪的圖象有兩個(gè)交點(diǎn)?你能說(shuō)明小明為什么這么說(shuō)嗎?
(3)經(jīng)過(guò)了上述的計(jì)算、繪圖,小明發(fā)現(xiàn),如果第(2)問(wèn)的兩個(gè)交點(diǎn)分別為B、C,那么,過(guò)BC的中點(diǎn)M作直線l的垂線,垂足為H,連接BH、CH,所得到的三角形BCH是個(gè)特殊的三角形,你能說(shuō)明它是什么三角形嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方形網(wǎng)格中(網(wǎng)格中的每個(gè)小正方形邊長(zhǎng)是1),△ABC的頂點(diǎn)均在格點(diǎn)上,請(qǐng)?jiān)谒o的直角坐標(biāo)系中解答下列問(wèn)題:
(1)作出△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°的△AB1C1,再作出△AB1C1關(guān)于原點(diǎn)O成中心對(duì)稱的△A1B2C2.
(2)點(diǎn)B1的坐標(biāo)為 ,點(diǎn)C2的坐標(biāo)為 .
(3)△ABC經(jīng)過(guò)怎樣的旋轉(zhuǎn)可得到△A1B2C2, .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】矩形ABCD中,AC、BD相交于O,AE平分∠BAD交BC于E.
(1)求證:△ABE是等腰直角三角形;
(2)若∠CAE=15°,求證:△ABO是等邊三角形;
(3)在(2)的條件下,求∠BOE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等腰△ABC中,AB=BC,將△ABC繞頂點(diǎn)B逆時(shí)針?lè)较蛐D(zhuǎn)度到△A1BC1的位置,AB與A1C1相交于點(diǎn)D,AC與A1C1、BC1分別交于點(diǎn)E、F.
(1)若∠ABC=,∠DBF=,則=______°;
(2)求證:△BCF≌△BA1D;
(3)連接DF,當(dāng)∠DBF=時(shí),判定△DBF的形狀并說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com