【題目】如圖是一個(gè)三角形數(shù)陣,仔細(xì)觀察排列規(guī)律:

1 1

2

3

4

.....

按照這個(gè)規(guī)律繼續(xù)排列下去,第21行第2個(gè)數(shù)是_______

【答案】

【解析】

先觀察找出規(guī)律,把1看成,那么數(shù)陣中不看符號(hào),第1個(gè)數(shù)、第2個(gè)數(shù)、第3個(gè)數(shù)、分母分別是1、2、3,分子都是分母的2倍減1,而分母是奇數(shù)時(shí)取正,分母為偶數(shù)時(shí)取負(fù),然后判斷第21行第2個(gè)數(shù)是所有數(shù)中第幾個(gè)數(shù),按照規(guī)律寫出即可.

由數(shù)陣可知,第n行有n個(gè)數(shù),

∴前20行總共有:1+2+3+4+…+20=個(gè)數(shù),

∴第21行第2個(gè)數(shù)是所有數(shù)中第212個(gè)數(shù),

又∵所有數(shù)中第m個(gè)數(shù):分母為m,分子為2m1,符號(hào)為(1)m+1,即第m個(gè)數(shù)是,

∴第212個(gè)數(shù)是,即第21行第2個(gè)數(shù)是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將口ABCD的邊DC延長到點(diǎn)E,使CE=DC,連接AE,交BC于點(diǎn)F.

(1)求證:△ABF≌△ECF

(2)若∠AFC=2∠D,連接AC、BE.求證:四邊形ABEC是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知平面直角坐標(biāo)系(如圖),直線的經(jīng)過點(diǎn)和點(diǎn).

(1)求、的值;

(2)如果拋物線經(jīng)過點(diǎn)、,該拋物線的頂點(diǎn)為點(diǎn),求的值;

(3)設(shè)點(diǎn)在直線上,且在第一象限內(nèi),直線軸的交點(diǎn)為點(diǎn),如果,求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l1y=﹣x+3x軸相交于點(diǎn)A,直線l2y=kx+b經(jīng)過點(diǎn)(3,﹣1),與x軸交于點(diǎn)B60),與y軸交于點(diǎn)C,與直線l1相交于點(diǎn)D

1)求直線l2的函數(shù)關(guān)系式;

2)點(diǎn)Pl2上的一點(diǎn),若ABP的面積等于ABD的面積的2倍,求點(diǎn)P的坐標(biāo);

3)設(shè)點(diǎn)Q的坐標(biāo)為(m,3),是否存在m的值使得QA+QB最小?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線y+1x軸、y軸分別交于點(diǎn)AB,以線AB為直角邊在第一象限內(nèi)作等腰RtABC,∠BAC=90o、點(diǎn)P(x、y)為線段BC上一個(gè)動(dòng)點(diǎn)(點(diǎn)P不與B、C重合),設(shè)△OPA的面積為S。

1)求點(diǎn)C的坐標(biāo);

2)求S關(guān)于x的函數(shù)解析式,并寫出x的的取值范圍;

3)△OPA的面積能于嗎,如果能,求出此時(shí)點(diǎn)P坐標(biāo),如果不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為3cm,動(dòng)點(diǎn)P從B點(diǎn)出發(fā)以3cm/s的速度沿著邊BC﹣CD﹣DA運(yùn)動(dòng),到達(dá)A點(diǎn)停止運(yùn)動(dòng);另一動(dòng)點(diǎn)Q同時(shí)從B點(diǎn)出發(fā),以1cm/s的速度沿著邊BA向A點(diǎn)運(yùn)動(dòng),到達(dá)A點(diǎn)停止運(yùn)動(dòng).設(shè)P點(diǎn)運(yùn)動(dòng)時(shí)間為x(s),△BPQ的面積為y(cm2),則y關(guān)于x的函數(shù)圖象是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)Ay軸的正半軸上,點(diǎn)Cx軸的正半軸上,線段OA,OC的長分別是mn且滿足(m-6)2+0,點(diǎn)D是線段OC上一點(diǎn),將△AOD沿直線AD翻折,點(diǎn)O落在矩形對(duì)角線AC上的點(diǎn)E

1)求線段OD的長

2)求點(diǎn)E的坐標(biāo)

3DE所在直線與AB相交于點(diǎn)M,點(diǎn)Nx軸的正半軸上,以M、A、N、C為頂點(diǎn)的四邊形是平行四邊形時(shí),求N點(diǎn)坐

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O的直徑AB=8,C為弧AB的中點(diǎn),P為⊙O上一動(dòng)點(diǎn),連接AP、CP,過CCDCPAP于點(diǎn)D,點(diǎn)PB運(yùn)動(dòng)到C時(shí),則點(diǎn)D運(yùn)動(dòng)的路徑長為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,EAD中點(diǎn),將ABE沿直線BE折疊后得到GBE,延長BGCDF,若AB=6,BC=,CF的長為_______

查看答案和解析>>

同步練習(xí)冊(cè)答案