【題目】某中學(xué)興趣小組準備圍建一個矩形苗圃園,其中一邊靠墻,另外三邊是由周長為30米的籬笆圍成.如圖所示,已知墻長為20米,設(shè)這個苗圃園垂直于墻的一邊長為x

(1)若苗圃園的面積為108m2,求x的值,

(2)苗圃園的面積能達到120m2嗎?若能,求出x;若不能,說明理由.

【答案】(1)x的值為6m9m;(2)不存在想使得苗圃園的面積能達到120m2,理由見解析.

【解析】

1)根據(jù)“長方形的面積=長×寬”列出方程即可求出答案.

2)根據(jù)“長方形的面積=長×寬”列出方程即可求出答案.

1)由題意可知:(302x)x108,

解得:x6x9

由于0302x≤20,

解得:5≤x15

答:若苗圃園的面積為108m2,x的值為6m9m

2)由題意可知:(302x)x120

x215x+600,

∴△=1524×60=﹣150,

此時方程無解,

答:不存在想使得苗圃園的面積能達到120m2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某中學(xué)一幢教學(xué)樓的頂部豎有一塊寫有校訓(xùn)的宣傳牌,米,王老師用測傾器在點測得點的仰角為,再向教學(xué)樓前進9米到達點,測得點的仰角為,若測傾器的高度米,不考慮其它因素,求教學(xué)樓的高度.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,半徑為RO的弦ACBD,AC、BD交于E,F上一點,連AF、BFAB、AD,下列結(jié)論:AEBE;ACBD,則ADR;的條件下,若,AB,則BF+CE1.其中正確的是( 。

A.①②B.①③C.②③D.①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在EFG中,∠EFG90°EFFG,且點E,F分別在矩形ABCD的邊AB,AD上.

1)如圖1,當點GCD上時,求證:AEF≌△DFG

2)如圖2,若FAD的中點,FGCD相交于點N,連接EN,求證:ENAE+DN;

3)如圖3,若AEAD,EG,FG分別交CD于點MN,求證:MG2MNMD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,剪兩張對邊平行且寬度相同的紙條隨意交叉疊放在一起,轉(zhuǎn)動其中一張,重合部分構(gòu)成一個四邊形,則下列結(jié)論中不一定成立的是( 。

A. ABC=∠ADC,∠BAD=∠BCDB. ABBC

C. ABCDADBCD. DAB+BCD180°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,這個圖案是3世紀我國漢代數(shù)學(xué)家趙爽在注解《周髀算經(jīng)》時給出的,人們稱它為“趙爽弦圖”.已知AE=5,BE=3,若向正方形ABCD內(nèi)隨意投擲飛鏢(每次均落在正方形ABCD內(nèi),且落在正方形ABCD內(nèi)任何一點的機會均等),則恰好落在正方形EFGH內(nèi)的概率為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在研究反比例函數(shù)的圖象與性質(zhì)時,我們對函數(shù)解析式進行了深入分析.首先,確定自變量x的取值范圍是全體非零實數(shù),因此函數(shù)圖象會被y軸分成兩部分;其次,分析解析式,得到yx的變化趨勢:x>0,隨著x值的增大,y的值減小,且逐漸接近于零,隨著x值的減小,y的值會越來越大,由此,可以大致畫出x>0時的部分圖象,如圖1所示.利用同樣的方法,我們可以研究函數(shù)的圖象與性質(zhì).

1)該函數(shù)自變量x的取值范圍_______________;

2)通過分析解析式畫出部分函數(shù)圖象,如圖2所示.請沿此思路在圖2中完善函數(shù)圖象的草圖并標出此函數(shù)圖象與y軸的交點A;(畫出網(wǎng)格區(qū)域內(nèi)的部分即可)

3)觀察圖象,寫出該函數(shù)的一條性質(zhì): ;

4)若關(guān)于x的方程有兩個不相等的實數(shù)根,結(jié)合圖象,直接寫出實數(shù)a的取值范圍: .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,四邊形是矩形,點,點,點.以點為中心,順時針旋轉(zhuǎn)矩形,得到矩形,點的對應(yīng)點分別為,記旋轉(zhuǎn)角為

(1)如圖①,當時,求點的坐標;

(2)如圖②,當點落在的延長線上時,求點的坐標;

(3)當點落在線段上時,求點的坐標(直接寫出結(jié)果即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場試銷一種成本為每件元的服裝,規(guī)定試銷期間銷售單價不低于成本單價,且獲利不得高于,經(jīng)試銷發(fā)現(xiàn),銷售量(件)與銷售單價(元)的關(guān)系符合一次函數(shù).

直接寫出銷售單價的取值范圍,

若銷售該服裝獲得利潤為元,試寫出利潤與銷售單價之間的關(guān)系式;銷售單價為多少元時,可獲得最大利潤,最大利潤是多少元?

查看答案和解析>>

同步練習(xí)冊答案