【題目】如圖,AB是⊙O的直徑,弦CD交AB于點E,OF⊥AC于點F,
(1)請?zhí)剿?/span>OF和BC的關(guān)系并說明理由;
(2)若∠D=30°,BC=1時,求圓中陰影部分的面積.(結(jié)果保留π)
【答案】(1)OF∥BC,OF=BC,理由見解析;(2).
【解析】
(1)先根據(jù)垂徑定理得出AF=CF,再根據(jù)AO=BO得出OF是△ABC的中位線,由三角形的中位線定理即可得出結(jié)論;
(2)連接OC,由(1)知,再根據(jù)直角三角形的性質(zhì)得出AB及AC的長,根據(jù)扇形的面積公式求出扇形AOC的度數(shù),根據(jù)陰影面積=扇形AOC的面積-△AOC的面積,即可得出結(jié)論.
(1)OF∥BC,OF=BC.
理由:由垂徑定理得AF=CF.
∵AO=BO,
∴OF是△ABC的中位線.
∴OF∥BC,OF=BC.
(2)連接OC.由(1)知OF=.
∵AB是⊙O的直徑,
∴∠ACB=90°.
∵∠D=30°,
∴∠A=30°.
∴AB=2BC=2.
∴AC=.
∴S△AOC=×AC×OF=.
∵∠AOC=120°,OA=1,
∴S扇形AOC=.
∴S陰影=S扇形AOC﹣S△AOC=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】當(dāng)今,越來越多的青少年在觀看影片《流浪地球》后,更加喜歡同名科幻小說,該小說銷量也急劇上升.書店為滿足廣大顧客需求,訂購該科幻小說若干本,每本進(jìn)價為20元.根據(jù)以往經(jīng)驗:當(dāng)銷售單價是25元時,每天的銷售量是250本;銷售單價每上漲1元,每天的銷售量就減少10本,書店要求每本書的利潤不低于10元且不高于18元.
(1)直接寫出書店銷售該科幻小說時每天的銷售量(本)與銷售單價(元)之間的函數(shù)關(guān)系式及自變量的取值范圍.
(2)書店決定每銷售1本該科幻小說,就捐贈元給困難職工,每天扣除捐贈后可獲得最大利潤為1960元,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以AB為直徑的⊙O交∠BAD的角平分線于C,過C作CD⊥AD于D,交AB的延長線于E.
(1)求證:直線CD為⊙O的切線;
(2)當(dāng)AB=2BE,且CE=時,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知銳角∠AOB如圖,(1)在射線OA上取一點C,以點O為圓心,OC長為半徑作,交射線OB于點D,連接CD;
(2)分別以點C,D為圓心,CD長為半徑作弧,交于點M,N;
(3)連接OM,MN.
根據(jù)以上作圖過程及所作圖形,下列結(jié)論中錯誤的是( )
A. ∠COM=∠CODB. 若OM=MN,則∠AOB=20°
C. MN∥CDD. MN=3CD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,對于點P(x,y)和Q(x,y′),給出如下定義:若y′=,則稱點Q為點P的“親密點”.例如:點(1,2)的“親密點”為點(1,3),點(﹣1,3)的“親密點”為點(﹣1,﹣3).若點P在函數(shù)y=x2﹣2x﹣3的圖象上,則其“親密點”Q的縱坐標(biāo)y′關(guān)于x的函數(shù)圖象大致正確的是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場銷售一批襯衫,平均每天可售出20件,每件盈利40元,經(jīng)過調(diào)查發(fā)現(xiàn),銷售單價每降低5元,每天可多售出10件,下列說法錯誤的是( )
A.銷售單價降低15元時,每天獲得利潤最大
B.每天的最大利潤為1250元
C.若銷售單價降低10元,每天的利潤為1200元
D.若每天的利潤為1050元,則銷售單價一定降低了5元
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB = 90°,BC = 6,AC = 8.點D是AB邊上一點,過點D作DE // BC,交邊AC于E.過點C作CF // AB,交DE的延長線于點F.
(1)如果,求線段EF的長;
(2)求∠CFE的正弦值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,需在一面墻上繪制幾個相同的拋物線型圖案.按照圖中的直角坐標(biāo)系,最左邊的拋物線可以用y=ax2+bx(a≠0)表示.已知拋物線上B,C兩點到地面的距離均為m,到墻邊OA的距離分別為m,m.
(1)求該拋物線的函數(shù)關(guān)系式,并求圖案最高點到地面的距離;
(2)若該墻的長度為10 m,則最多可以連續(xù)繪制幾個這樣的拋物線型圖案?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com