【題目】已知,如圖1:中,、的平分線相交于點,過點作交、于、
(1)直接寫出圖1中所有的等腰三角形.指出與、間有怎樣的數(shù)量關系?
(2)在(1)的條件下,若,,求的周長;
(3)如圖2,若中,的平分線與三角形外角的平分線交于點,過點作交于,交于,請問(1)中與、間的關系還是否存在,若存在,說明理由:若不存在,寫出三者新的數(shù)量關系,并說明理由;
(4)如圖3,、的外角平分線的延長線相交于點,請直接寫出,、,之間的數(shù)量關系.不需證明.
【答案】(1)等腰△OBE和等腰△OCF;EF=BE+CF;(2)25;(3)見解析; (4)EF=BE+CF+MN.
【解析】
(1)利用角平分線和平行線的即可得出結論;
(2)利用(1)的結論即可得出結論;
(3)同(1)的方法即可得出結論;
(4)利用角平分線和平行線的即可得出結論;
解:(1)∵BO是∠ABC的平分線,
∴∠EBO=∠CBO,
∵EF∥BC,
∴∠CBO=∠BOE,
∴∠EBO=∠EOB,
∴BE=OE,
∴△BEO是等腰三角形,
同理:△CFO是等腰三角形,
EF=OE+OF=BE+CF;
(2)由(1)知,OE=BE,OF=CF,
∴AEF的周長為AE+EF+AF=AE+OE+OF+AF=AE+BE+CF+AF=AB+AC=25;
(3)(1)中結論不成立,新結論為:EF=BE-CF,理由:
∵BO是∠ABC的平分線,
∴∠ABO=∠CBO,
∵EF∥BC,
∴∠CBO=∠EOB,
∴∠ABO=EOB,
∴OE=BE,
同理:CF=OF,
∴EF=OE-OF=BE-CF,
(4)∵BO是∠CBE的平分線,
∴∠EBO=∠CBO,
∵EF∥BC,
∴∠EMB=∠CBO,
∴∠EBM=∠EMB,
∴BE=EM,
同理:FN=CF,
∴EF=EM+MN+FN=BE+MN+CF.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=6cm,BC=8cm,點P從點A沿邊AB以1cm/s的速度向點B移動,同時點Q從點B沿邊BC以2cm/s的速度向點C移動,當P、Q兩點中有一個點到終點時,則另一個點也停止運動.當△DPQ的面積比△PBQ的面積大19.5cm2時,求點P運動的時間.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列關于一次函數(shù):的說法錯誤的是( )
A.它的圖象與坐標軸圍成的三角形面積是
B.點在這個函數(shù)的圖象上
C.它的函數(shù)值隨的增大而減小
D.它的圖象經(jīng)過第一、二、三象限
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,為了測量某建筑物BC的高度,小明先在地面上用測角儀自A處測得建筑物頂部的仰角是30°,然后在水平地面上向建筑物前進了10m到達D處,此時遇到一斜坡,坡度i=1:,沿著斜坡前進10米到達E處測得建筑物頂部的仰角是45°,請求出該建筑物BC的高度為( 。ńY果可帶根號)
A. 5+5 B. 5+5 C. 5+10 D. 5+10
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,⊙O是正方形ABCD的外接圓,P是⊙O上不與A、B重合的任意一點,則∠APB等于( )
A.45° B.60° C.45° 或135° D.60° 或120°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,AB是⊙O的直徑,點P在BA的延長線上,弦CD交AB于E,連接OD、PC、BC,∠AOD=2∠ABC,∠P=∠D,過E作弦GF⊥BC交圓與G、F兩點,連接CF、BG.則下列結論:①CD⊥AB;②PC是⊙O的切線;③OD∥GF;④弦CF的弦心距等于BG.則其中正確的是( 。
A. ①②④ B. ③④ C. ①②③ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若關于x的方程x2+2(m﹣1)x+m2﹣2m﹣3=0(m為實數(shù)).
(1)求證:不論m為何值,該方程均有兩個不等的實根;
(2)解方程求出兩個根x1,x2(x1>x2),并求w=x1(x1+x2)+x12的最值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】今年以來,我國持續(xù)大面積的霧霾天氣讓環(huán)保和健康問題成為焦點.為了調(diào)查學生對霧霾天氣知識的了解程度,某校在學生中做了一次抽樣調(diào)查,調(diào)查結果共分為四個等級:A.非常了解;B.比較了解;C.基本了解;D.不了解.根據(jù)調(diào)查統(tǒng)計結果,繪制了不完整的三種統(tǒng)計圖表.
對霧霾了解程度的統(tǒng)計表:
對霧霾的了解程度 | 百分比 |
A.非常了解 | 5% |
B.比較了解 | m |
C.基本了解 | 45% |
D.不了解 | n |
請結合統(tǒng)計圖表,回答下列問題.
(1)本次參與調(diào)查的學生共有 人,m= ,n= ;
(2)圖2所示的扇形統(tǒng)計圖中D部分扇形所對應的圓心角是 度;
(3)請補全條形統(tǒng)計圖;
(4)根據(jù)調(diào)查結果,學校準備開展關于霧霾知識競賽,某班要從“非常了解”態(tài)度的小明和小剛中選一人參加,現(xiàn)設計了如下游戲來確定,具體規(guī)則是:把四個完全相同的乒乓球標上數(shù)字1,2,3,4,然后放到一個不透明的袋中,一個人先從袋中隨機摸出一個球,另一人再從剩下的三個球中隨機摸出一個球.若摸出的兩個球上的數(shù)字和為奇數(shù),則小明去;否則小剛?cè)ィ堄脴錉顖D或列表法說明這個游戲規(guī)則是否公平.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com