【題目】奧林匹克公園觀光塔由五座高度不等、錯落有致的獨立塔組成.在綜合實踐活動課中,某小組的同學(xué)決定利用測角儀測量這五座塔中最高塔的高度(測角儀高度忽略不計).他們的操作方法如下:如圖,他們先在B處測得最高塔塔頂A的仰角為45°,然后向最高塔的塔基直行90米到達(dá)C處,再次測得最高塔塔頂A的仰角為58°.請幫助他們計算出最高塔的高度AD約為多少米.(參考數(shù)據(jù):sin58°≈0.85,cos58°≈0.53,tan58°≈1.60)

【答案】最高塔的高度AD約為240

【解析】

根據(jù)已知條件求出BD=AD,設(shè)DC=x,得出AD=90+x,再根據(jù)tan58°=,求出x的值,即可得出AD的值.

∵∠B=45°,ADDB,

∴∠DAB=45°,

BD=AD,

設(shè)DC=x,則BD=BC+DC=90+x,

AD=90+x,

tan58°===1.60,

解得:x=150,

AD=90+150=240(米),

答:最高塔的高度AD約為240米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD的對角線BD經(jīng)過坐標(biāo)原點,矩形的邊分別平行于坐標(biāo)軸,點C在反比例函數(shù)y=的圖象上,若點A的坐標(biāo)為(﹣2,﹣3),則k的值為( 。

A. 1 B. ﹣5 C. 4 D. 1或﹣5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A(﹣2,﹣2)、B(n,4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)y=的圖象的兩個交點.

(1)求反比例函數(shù)和一次函數(shù)的解析式;

(2)求AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的解析式是y=x2﹣2x﹣3.

(1)與y軸的交點坐標(biāo)是   ,頂點坐標(biāo)是   

(2)在坐標(biāo)系中利用描點法畫出此拋物線;

x

y

(3)結(jié)合圖象回答:當(dāng)﹣2<x<2時,函數(shù)值y的取值范圍是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,對于P,Q兩點給出如下定義:若點P到兩坐標(biāo)軸的距離之和等于點Q到兩坐標(biāo)軸的距離之和,則稱P,Q兩點為同族點.下圖中的P,Q兩點即為同族點.

(1)已知點A的坐標(biāo)為(,1),

①在點R(0,4),S(2,2),T(2, )中,為點A的同族點的是 ;

②若點Bx軸上,且A,B兩點為同族點,則點B的坐標(biāo)為

(2)直線l ,與x軸交于點C,與y軸交于點D

M為線段CD上一點,若在直線上存在點N,使得M,N兩點為同族點,求n的取值范圍;

M為直線l上的一個動點,若以(m,0)為圓心, 為半徑的圓上存在點N,使得M,N兩點為同族點,直接寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,對于P,Q兩點給出如下定義:若點P到兩坐標(biāo)軸的距離之和等于點Q到兩坐標(biāo)軸的距離之和,則稱P,Q兩點為同族點.下圖中的PQ兩點即為同族點.

(1)已知點A的坐標(biāo)為(,1),

①在點R(0,4),S(2,2),T(2, )中,為點A的同族點的是 ;

②若點Bx軸上,且AB兩點為同族點,則點B的坐標(biāo)為 ;

(2)直線l ,與x軸交于點C,與y軸交于點D,

M為線段CD上一點,若在直線上存在點N,使得M,N兩點為同族點,求n的取值范圍;

M為直線l上的一個動點,若以(m,0)為圓心, 為半徑的圓上存在點N,使得MN兩點為同族點,直接寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個三位正整數(shù)N,各個數(shù)位上的數(shù)字互不相同且都不為0,若從它的百位、十位、個位上的數(shù)字任意選擇兩個數(shù)字組成兩位數(shù),所有這些兩位數(shù)的和等于這個三位數(shù)本身,則稱這樣的三位數(shù)N為“公主數(shù)”.例如:132,選擇百位數(shù)字1和十位數(shù)字3所組成的兩位數(shù)為:1331,選擇百位數(shù)字1和個位數(shù)字2組成的兩位數(shù)為:1221,選擇十位數(shù)字3和個位數(shù)字2所組成的兩位數(shù)為:3223,因為13+31+12+21+32+23=132,所以132是“公主數(shù)”.一個三位正整數(shù),若它的十位數(shù)字等于百位數(shù)字與個位數(shù)字的和,則稱這樣的三位數(shù)為“伯伯?dāng)?shù)”.

(1)判斷123是不是“公主數(shù)”?請說明理由.

(2)證明:當(dāng)一個“伯伯?dāng)?shù)”是“公主數(shù)”時,則z=2x

(3)若一個“伯伯?dāng)?shù)”與132的和能被13整除,求滿足條件的所有“伯伯?dāng)?shù)”.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點E、F分別是四邊形ABCD邊AB、AD上的點,且DE與CF相交于點G.

(1)如圖①,若AB∥CD,AB=CD,∠A=90°,且ADDF=AEDC,求證:DE⊥CF:

(2)如圖②,若AB∥CD,AB=CD,且∠A=∠EGC時,求證:DECD=CFDA:

(3)如圖③,若BA=BC=3,DA=DC=4,設(shè)DE⊥CF,當(dāng)∠BAD=90°時,試判斷是否為定值,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市為了了解高峰時段16路公交車從總站乘該路車出行的人數(shù)情況,隨機抽查了10個班次乘該路車的人數(shù),結(jié)果如下:

14,23,16,25,23,28,26,27,23,25.

(1)這組數(shù)據(jù)的眾數(shù)為________,中位數(shù)為________;

(2)計算這10個班次乘該路車人數(shù)的平均數(shù);

(3)如果16路公交車在高峰時段從總站共出車60個班次,根據(jù)上面的計算結(jié)果,估計在高峰時段從總站乘該路車出行的乘客共有多少人?

查看答案和解析>>

同步練習(xí)冊答案