【題目】(1)如圖,已知AB、CD是大圓⊙O的弦,AB=CD,M是AB的中點(diǎn).連接OM,以O為圓心,OM為半徑作小圓⊙O.判斷CD與小圓⊙O的位置關(guān)系,并說明理由;
(2)已知⊙O,線段MN,P是⊙O外一點(diǎn).求作射線PQ,使PQ被⊙O截得的弦長等于MN.
(不寫作法,但保留作圖痕跡)
【答案】(1)相切,證明見解析;(2)答案見解析
【解析】
(1)過點(diǎn)O作ON⊥CD,連接OA,OC,根據(jù)垂徑定理及其推論可得∠AMO=∠ONC=90°,AM=CN,從而求證△AOM≌△CON,從而判定CD與小圓O的位置關(guān)系;(2)在圓O上任取一點(diǎn)A,以A為圓心,MN為半徑畫弧,交圓O于點(diǎn)B,過點(diǎn)O做AB的垂線,交AB于點(diǎn)C,然后以點(diǎn)O為圓心,OC為半徑畫圓,連接PO,取PO的中點(diǎn)D,以點(diǎn)D為圓心,OD為半徑畫圓,交以O(shè)C為半徑的圓于點(diǎn)E,連接PE,交以O(shè)A為半徑的圓于F,H兩點(diǎn),F(xiàn)H即為所求.
解:(1)過點(diǎn)O作ON⊥CD,連接OA,OC
∵AB、CD是大圓⊙O的弦,AB=CD,M是AB的中點(diǎn),ON⊥CD
∴∠AMO=∠ONC=90°,AM=,CN,
∴AM=CN
又∵OA=OC
∴△AOM≌△CON
∴ON=OM
∴CD與小圓O相切
(2)如圖FH即為所求
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在學(xué)習(xí)概率的課堂上,老師提出的問題:只有一張電影票,小麗和小芳想通過抽取撲克牌的游戲來決定誰去看電影,請你設(shè)計(jì)一個(gè)對小麗和小芳都公平的方案.甲同學(xué)的方案:將紅桃2、3、4、5四張牌背面向上,小麗先抽一張,小芳從剩下的三張牌中抽一張,若兩張牌上的數(shù)字之和是奇數(shù),則小麗看電影,否則小芳看電影.
(1)甲同學(xué)的方案公平嗎?請用列表或畫樹狀圖的方法說明;
(2)乙同學(xué)將甲同學(xué)的方案修改為只用2、3、5、7四張牌,抽取方式及規(guī)則不變,乙的方案公平嗎?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:我們知道,四邊形的一條對角線把這個(gè)四邊形分成了兩個(gè)三角形,如果這兩個(gè)三角形相似(不全等),我們就把這條對角線叫做這個(gè)四邊形的“相似對角線”.
理解:
(1)如圖1,已知Rt△ABC在正方形網(wǎng)格中,請你只用無刻度的直尺在網(wǎng)格中找到一點(diǎn) D,使四邊形ABCD是以AC為“相似對角線”的四邊形(畫出1個(gè)即可);
(2)如圖2,在四邊形ABCD中,,對角線BD平分∠ABC.
求證: BD是四邊形ABCD的“相似對角線”;
運(yùn)用:
(3)如圖3,已知FH是四邊形EFGH的“相似對角線”,∠EFH=∠HFG=.連接EG,若△EFG的面積為,求FH的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】重慶八中建校80周年,在體育、藝術(shù)、科技等方面各具特色,其中排球選修課是體育特色項(xiàng)目之一.體育組老師為了了解初一年級(jí)學(xué)生的訓(xùn)練情況,隨機(jī)抽取了初一年級(jí)部分學(xué)生進(jìn)行1分鐘墊球測試,并將這些學(xué)生的測試成績(即1分鐘的墊球個(gè)數(shù),且這些測試成績都在60~180范圍內(nèi))分段后給出相應(yīng)等級(jí),具體為:測試成績在60~90范圍內(nèi)的記為D級(jí)(不包括90),90~120范圍內(nèi)的記為C級(jí)(不包括120),120~150范圍內(nèi)的記為B級(jí)(不包括150),150~180范圍內(nèi)的記為A級(jí).現(xiàn)將數(shù)據(jù)整理繪制成如下兩幅不完整的統(tǒng)計(jì)圖,其中在扇形統(tǒng)計(jì)圖中A級(jí)對應(yīng)的圓心角為90°,請根據(jù)圖中的信息解答下列問題:
(1)在這次測試中,一共抽取了 名學(xué)生,并補(bǔ)全頻數(shù)分布直方圖:在扇形統(tǒng)計(jì)圖中,D級(jí)對應(yīng)的圓心角的度數(shù)為 度.
(2)王攀同學(xué)在這次測試中1分鐘墊球140個(gè).他為了了解自己墊球個(gè)數(shù)在年級(jí)排名的大致情況,他把成績?yōu)?/span>B等的全部同學(xué)1分鐘墊球人數(shù)做了統(tǒng)計(jì),其統(tǒng)計(jì)結(jié)果如表:
成績(個(gè)) | 120 | 125 | 130 | 135 | 140 | 145 |
人數(shù)(頻數(shù)) | 2 | 8 | 3 | 10 | 9 | 8 |
(墊球個(gè)數(shù)計(jì)數(shù)原則:120<?jí)|球個(gè)數(shù)≤125記為125,125<?jí)|球個(gè)數(shù)≤130記為130,依此類推)請你估計(jì)王攀同學(xué)的1分鐘墊球個(gè)數(shù)在年級(jí)排名的大致情況.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知三點(diǎn)A(0,0),B(5,12),C(14,0),則△ABC內(nèi)心的坐標(biāo)為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,AC=4,BC=3,點(diǎn)D是AB邊上一點(diǎn)(不與A、B重合),若過點(diǎn)D的直線截得的三角形與△ABC相似,并且平分△ABC的周長,則AD的長為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知菱形ABCD,對角線AC、BD相交于點(diǎn)O,AC=6,BD=8.點(diǎn)E是AB邊上一點(diǎn),求作矩形EFGH,使得點(diǎn)F、G、H分別落在邊BC、CD、AD上.設(shè) AE=m.
(1)如圖①,當(dāng)m=1時(shí),利用直尺和圓規(guī),作出所有滿足條件的矩形EFGH;(保留作圖痕跡,不寫作法)
(2)寫出矩形EFGH的個(gè)數(shù)及對應(yīng)的m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為5,點(diǎn)E、F分別在BC和CD邊上,分別連接AE、AF、EF,若∠EAF=45°,則△CEF的周長是( )
A.6+2B.8.5C.10D.12
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com