【題目】如圖1,在正方形中,點(diǎn)為上一點(diǎn),連接,把沿折疊得到,延長(zhǎng)交于,連接.
(1)求的度數(shù).
(2)如圖,為的中點(diǎn),連接.
①求證:;
②若正方形邊長(zhǎng)為,求線段的長(zhǎng).
【答案】(1);(2)①詳見(jiàn)解析;②
【解析】
(1)由正方形的性質(zhì)可得DC=DA.∠A=∠B=∠C=∠ADC=90°,由折疊的性質(zhì)得出∠DFE=∠C,DC=DF,∠1=∠2,再求出∠DFG=∠A,DA=DF,然后由“HL”證明Rt△DGA≌Rt△DGF,由全等三角形對(duì)應(yīng)角相等得出∠3=∠4,得出∠2+∠3=45°即可;
(2)①由折疊的性質(zhì)和線段中點(diǎn)的定義可得CE=EF=BE,∠DEF=∠DEC,再由三角形的外角性質(zhì)得出∠5=∠DEC,然后利用同位角相等,兩直線平行證明即可;
②設(shè)AG=x,表示出GF、BG,根據(jù)點(diǎn)E是BC的中點(diǎn)求出BE、EF,從而得到GE的長(zhǎng)度,再利用勾股定理列出方程求解即可;
(1)解:如圖1所示:
∵四邊形ABCD是正方形,
∴DC=DA.∠A=∠B=∠C=∠ADC=90°,
∵△DEC沿DE折疊得到△DEF,
∴∠DFE=∠C,DC=DF,∠1=∠2,
∴∠DFG=∠A=90°,DA=DF,
在Rt△DGA和Rt△DGF中,
,
∴Rt△DGA≌Rt△DGF(HL),
∴∠3=∠4,
∴∠EDG=∠3+∠2=∠ADF+∠FDC=(∠ADF+∠FDC),
=×90°,
=45°;
(2)①證明:如圖2所示:
∵△DEC沿DE折疊得到△DEF,E為BC的中點(diǎn),
∴CE=EF=BE,∠DEF=∠DEC,
∴∠5=∠6,
∵∠FEC=∠5+∠6,
∴∠DEF+∠DEC=∠5+∠6,
∴2∠5=2∠DEC,
即∠5=∠DEC,
∴BF∥DE;
②解:設(shè)AG=x,則GF=x,BG=12-x,
∵正方形邊長(zhǎng)為12,E為BC的中點(diǎn),
∴CE=EF=BE=×12=6,
∴GE=EF+GF=6+x,
在Rt△GBE中,根據(jù)勾股定理得:(12-x)2+62=(6+x)2,
解得:x=4,
即線段AG的長(zhǎng)為4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】順次連結(jié)對(duì)角線相等的四邊形各邊中點(diǎn)所得的四邊形必是( )
A.菱形B.矩形C.正方形D.無(wú)法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一般情況下,對(duì)于數(shù)和,(≠,不等號(hào)),但是對(duì)于某些特殊的數(shù)和,我們把這些特殊的數(shù)和,稱為“理想數(shù)對(duì)”,記作.例如當(dāng)時(shí),有,那么就是“理想數(shù)對(duì)”.
(1)可以稱為“理想數(shù)對(duì)”的是 ;
(2)如果是“理想數(shù)對(duì)”,那么= ;
(3)若是“理想數(shù)對(duì)”,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知與成正比例,且時(shí),.
(1)寫出與之間的函數(shù)關(guān)系系;
(2)計(jì)算時(shí),的值;
(3)計(jì)算時(shí),的值;
(4)若點(diǎn)在這個(gè)函數(shù)圖象上,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】菱形ABCD中,∠B=60°,點(diǎn)E在邊BC上,點(diǎn)F在邊CD上.
(1)如圖①,若點(diǎn)E是BC的中點(diǎn),∠AEF=60°,求證:BE=DF;
(2)如圖②,若∠EAF=60°,求證:△AEF是等邊三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC中,AC⊥BC,AD平分∠BAC交BC于點(diǎn)D,DE⊥AD交AB于點(diǎn)E,M為AE的中點(diǎn),BF⊥BC交CM的延長(zhǎng)線于點(diǎn)F,BD=4,CD=3.下列結(jié)論:①∠AED=∠ADC;② ;③ACBE=12;④3BF=4AC;其中正確結(jié)論的個(gè)數(shù)有( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀察下面一列數(shù),探究其中的規(guī)律:—1,,,,,
(1)填空:第11,12,13三個(gè)數(shù)分別是 , , ;
(2)第2020個(gè)數(shù)是什么?
(3)如果這列數(shù)無(wú)限排列下去,與哪個(gè)數(shù)越來(lái)越近?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線y=-x2+2x+3與x軸交于點(diǎn)A、B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C.
(1)求直線BC的表達(dá)式;
(2)拋物線的對(duì)稱軸上存在點(diǎn)P,使∠APB=∠ABC,利用圖①求點(diǎn)P的坐標(biāo);
(3)點(diǎn)Q在y軸右側(cè)的拋物線上,利用圖②比較∠OCQ與∠OCA的大小,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為鼓勵(lì)大學(xué)畢業(yè)生自主創(chuàng)業(yè),某市政府出臺(tái)了相關(guān)政策:由政府協(xié)調(diào),本市企業(yè)按成本價(jià)提供產(chǎn)品給大學(xué)畢業(yè)生自主銷售,成本價(jià)與出廠價(jià)之間的差價(jià)由政府承擔(dān).李明按照相關(guān)政策投資銷售本市生產(chǎn)的一種新型節(jié)能燈.已知這種節(jié)能燈的成本價(jià)為每件10元,出廠價(jià)為每件12元,每月銷售量y(件)與銷售單價(jià)x(元)之間的關(guān)系近似滿足一次函數(shù):y=-10x+500.
(1)李明在開(kāi)始創(chuàng)業(yè)的第一個(gè)月將銷售單價(jià)定為20元,那么政府這個(gè)月為他承擔(dān)的總差價(jià)為多少元?
(2)設(shè)李明獲得的利潤(rùn)為W(元),當(dāng)銷售單價(jià)定為多少元時(shí),每月可獲得最大利潤(rùn)?
(3)物價(jià)部門規(guī)定,這種節(jié)能燈的銷售單價(jià)不得高于25元.如果李明想要每月獲得的利潤(rùn)不低于3000元,那么政府為他承擔(dān)的總差價(jià)最少為多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com