【題目】在一條筆直的公路上有A、B兩地,甲騎自行車(chē)從A地到B地;乙騎電動(dòng)車(chē)從B地到A地,到達(dá)A地后立即按原路返回,如圖是甲、乙兩人離B地的距離y(km)與行駛時(shí)x(h)之間的函數(shù)圖象,根據(jù)圖象解答以下問(wèn)題:
(1)寫(xiě)出A、B兩地之間的距離;
(2)直接寫(xiě)出y甲、y乙與x之間的函數(shù)關(guān)系式,請(qǐng)求出點(diǎn)M的坐標(biāo),并解釋該點(diǎn)坐標(biāo)所表示的實(shí)際意義;
(3)若兩人之間保持的距離不超過(guò)3km時(shí),能夠用無(wú)線(xiàn)對(duì)講機(jī)保持聯(lián)系,請(qǐng)直接寫(xiě)出甲、乙兩人能夠用無(wú)線(xiàn)對(duì)講機(jī)保持聯(lián)系時(shí)x的取值范圍.
【答案】(1)30;(2)y甲=-15x+30, y乙=30x, y乙=-30x+60,點(diǎn)M()甲乙經(jīng)過(guò)小時(shí)第一次相遇,此時(shí)離B地20千米;(3)
【解析】
(1)x=0時(shí)甲的y值即為A、B兩地的距離;
(2)根據(jù)圖象求出甲、乙兩人的速度,再利用相遇問(wèn)題求出相遇時(shí)間,然后求出乙的路程即可得到點(diǎn)M的坐標(biāo)以及實(shí)際意義;
(3)分相遇前和相遇后兩種情況求出x的值,再求出最后兩人都到達(dá)B地前兩人相距3千米的時(shí)間,然后寫(xiě)出兩個(gè)取值范圍即可.
解:(1)由圖像可知,
x=0時(shí),甲距離B地30千米,
所以,A、B兩地的距離為30千米;
(2)由圖可知,甲的速度:302=15千米/時(shí),
乙的速度:301=30千米/時(shí),
30÷(15+30)=,
×30=20千米,
所以,點(diǎn)M的坐標(biāo)為(,20),表示小時(shí)后兩車(chē)相遇,此時(shí)距離B地20千米;
(3)設(shè)x小時(shí)時(shí),甲、乙兩人相距3km,
①若是相遇前,則15x+30x=30-3,
解得x=,
②若是相遇后,則15x+30x=30+3,
解得x=,
③若是到達(dá)B地前,則15x-30(x-1)=3,
解得x=,
所以,當(dāng)或時(shí),甲、乙兩人能夠用無(wú)線(xiàn)對(duì)講機(jī)保持聯(lián)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次綜合實(shí)踐課上,同學(xué)們?yōu)榻淌掖皯?hù)設(shè)計(jì)一個(gè)遮陽(yáng)篷,小明同學(xué)繪制的設(shè)計(jì)圖如圖所示,其中AB表示窗戶(hù),且AB=2米,BCD表示直角遮陽(yáng)蓬,已知當(dāng)?shù)匾荒曛姓鐣r(shí)刻太陽(yáng)光與水平線(xiàn)CD的最小夾角∠PDN=18.6°,最大夾角∠MDN=64.5°.請(qǐng)你根據(jù)以上數(shù)據(jù),幫助小明同學(xué)計(jì)算出遮陽(yáng)篷中CD的長(zhǎng)是多少米?(結(jié)果精確到0.1)(參考數(shù)據(jù):sin18.6°≈0.32,tan18.6°≈0.34,sin64.5°≈0.90,tan64.5°≈2.1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB是⊙O上的點(diǎn),C是⊙O上的點(diǎn),點(diǎn)D在AB的延長(zhǎng)線(xiàn)上,∠BCD=∠BAC.
(1)求證:CD是⊙O的切線(xiàn);
(2)若∠D=30°,BD=2,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了解七年級(jí)學(xué)生體育課足球運(yùn)球的掌握情況,隨機(jī)抽取部分七年級(jí)學(xué)生足球運(yùn)球的測(cè)試成績(jī)作為一個(gè)樣本,按A、B、C、D四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),制成了如圖所示的不完整的統(tǒng)計(jì)圖:
根據(jù)所給信息,解答以下問(wèn)題:
(1)在扇形統(tǒng)計(jì)圖中,求等級(jí)C對(duì)應(yīng)的扇形圓心角的度數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)該校七年級(jí)有300名學(xué)生,請(qǐng)估計(jì)足球運(yùn)球測(cè)試成績(jī)達(dá)到A等級(jí)的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC在平面直角坐標(biāo)系xOy中的位置如圖所示.
(1)若△A1B1C1與△ABC關(guān)于原點(diǎn)O成中心對(duì)稱(chēng),則點(diǎn)A1的坐標(biāo)為_____ ;
(2)將△ABC向右平移4個(gè)單位長(zhǎng)度得到△A2B2C2,則點(diǎn)B2的坐標(biāo)為_____ ;
(3)畫(huà)出△ABC繞O點(diǎn)順時(shí)針?lè)较蛐D(zhuǎn)90°得到的△A3B3C3,并求點(diǎn)C走過(guò)的路徑長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】全面兩孩政策實(shí)施后,甲,乙兩個(gè)家庭有了各自的規(guī)劃.假定生男生女的概率相同,回答下列問(wèn)題:
(1)甲家庭已有一個(gè)男孩,準(zhǔn)備再生一個(gè)孩子,則第二個(gè)孩子是女孩的概率是 ;
(2)乙家庭沒(méi)有孩子,準(zhǔn)備生兩個(gè)孩子,求至少有一個(gè)孩子是女孩的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著信息技術(shù)的快速發(fā)展,人們購(gòu)物的付款方式更加多樣、便捷.某校數(shù)學(xué)興趣小組為了解人們最喜歡的付款方式設(shè)計(jì)了一份調(diào)查問(wèn)卷,要求被調(diào)查者選且只選其中一種你最喜歡的付款方式.現(xiàn)將調(diào)查結(jié)果進(jìn)行統(tǒng)計(jì)并繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)統(tǒng)計(jì)圖回答下列問(wèn)題:
(1)這次活動(dòng)共調(diào)查了 人;在扇形統(tǒng)計(jì)圖中,表示“其他”付款的扇形圓心角的度數(shù)為 ;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,圓心為P(,)的動(dòng)圓經(jīng)過(guò)點(diǎn)A(1,2)且與軸相切于點(diǎn)B.
(1)當(dāng)=2是,求⊙P的半徑;
(2)求關(guān)于的函數(shù)解析式,在圖②中畫(huà)出此函數(shù)圖像;
(3)請(qǐng)類(lèi)比圓的定義(圓可以看成是到定點(diǎn)的距離等于定長(zhǎng)的所有點(diǎn)的集合),給(2)中所得函數(shù)圖像進(jìn)行定義:此函數(shù)圖像可以看成是到 的距離等于到 的距離的所有點(diǎn)的集合;
(4)當(dāng)⊙P的半徑為1時(shí),若⊙P與以上(2)中所得函數(shù)圖象相交于點(diǎn)C、D,其中交點(diǎn)D(,)在點(diǎn)C的右側(cè),請(qǐng)利用圖②,則cos∠APD= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形OA1B1C1的邊長(zhǎng)為1,以O為圓心,OA1為半徑作扇形OA1C1,弧A1C1與OB1相交于點(diǎn)B2,設(shè)正方形OA1B1C1與扇形OA1C1之間的陰影部分的面積為S1;然后以OB2為對(duì)角線(xiàn)作正方形OA2B2C2,又以O為圓心,OA2為半徑作扇形OA2C2,弧A2C2與OB1相交于點(diǎn)B3,設(shè)正方形OA2B2C2與扇形OA2C2之間的陰影部分面積為S2;按此規(guī)律繼續(xù)作下去,設(shè)正方形OA2018B2018C2018與扇形OA2018C2018之間的陰影部分面積為S2018,則S2018=____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com