【題目】填空,完成下列說理過程.
如圖,點(diǎn)、、在同一條直線上,,分別平分和.
(1)求的度數(shù):
(2)如果,求的度數(shù).
解:(1)如圖,因?yàn)?/span>是的平分線,
所以.
因?yàn)?/span>是的平分線,
所以 ① .
所以 ② ③ .
(2)由(1)可知.
因?yàn)?/span>
所以 ④
則: ⑤ ⑥ .
【答案】(1)∠BOC;∠COE;90° (2)∠AOD;∠DOE;155
【解析】
(1)由已知條件和觀察圖形,再利用角平分線的定義就可求出角的度數(shù);
(2)由已知條件和觀察圖形,再利用角平分線的定義和(1)中的結(jié)論就可求出角的度數(shù).
(1)如圖,因?yàn)?/span>OD是∠AOC的平分線,
所以∠COD=∠AOC.
因?yàn)?/span>OE是∠BOC的平分線,
所以∠COE=∠BOC.
所以∠DOE=∠COD+∠COE=(∠AOC+∠BOC)=∠AOB=90°.
故答案為:∠BOC;∠COE;90°.
(2)由(1)可知.
因?yàn)?/span>
所以∠AOD
則:∠DOE 155°
故答案為:∠AOD;∠DOE;155
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD在平面直角坐標(biāo)系的第一象限內(nèi),BC與x軸平行,AB=1,點(diǎn)C的坐標(biāo)為(6,2),E是AD的中點(diǎn);反比例函數(shù)y1=(x>0)圖象經(jīng)過點(diǎn)C和點(diǎn)E,過點(diǎn)B的直線y2=ax+b與反比例函數(shù)圖象交于點(diǎn)F,點(diǎn)F的縱坐標(biāo)為4.
(1)求反比例函數(shù)的解析式和點(diǎn)E的坐標(biāo);
(2)求直線BF的解析式;
(3)直接寫出y1>y2時,自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線a、b分別與∠A的兩邊相交,且a∥b.下列各角的度數(shù)關(guān)系正確的是( 。
A. ∠2+∠5>180° B. ∠2+∠3<180° C. ∠1+∠6>180° D. ∠3+∠4<180°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB=10,P是線段AB上的動點(diǎn),分別以AP、PB為邊在線段AB的同側(cè)作等邊△ACP和△PDB,連接CD,設(shè)CD的中點(diǎn)為G,當(dāng)點(diǎn)P從點(diǎn)A運(yùn)動到點(diǎn)B時,則點(diǎn)G移動路徑的長是_________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某一出租車一天下午以銀泰城為出發(fā)地,在東西走向的馬路上營運(yùn),如果規(guī)定向東行駛為正,行車?yán)锍蹋▎挝唬?/span>)依先后次序記錄如下:
,,,,,,,,,.
(1)將最后一名乘客送到目的地,出租車離銀泰城出發(fā)點(diǎn)多遠(yuǎn)?在銀泰城的什么方向?
(2)若每千米的價格為元,司機(jī)一個下午的營業(yè)額為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,M是△ABC的邊BC的中點(diǎn),AN平分,BNAN于點(diǎn)N,延長BN交AC于點(diǎn)D,已知AB=10,AC=16.
(1)求證:BN=DN;
(2)求MN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列按照一定規(guī)律排列一組圖形,其中圖形①中共有2個小三角形,圖形②中共有6個小“三角形,圖形③中共有11個小三角形,圖形④中共有17個小三角形,……,按此規(guī)律,圖形⑧中共有個小三角形,這里的( ).
A.32B.41C.51D.53
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將長方形紙片ABCD的∠C沿著GF折疊(點(diǎn)F在BC上,不與B,C重合),使點(diǎn)C落在長方形內(nèi)部的點(diǎn)E處,若FH平分∠BFE,則∠GFH的度數(shù)是( )
A.110°B.100°C.90°D.80°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com