【題目】如圖,直線ymx+n與兩坐標軸分別交于點BC,且與反比例函致yx0)圖象交于點A,過點AADx軸,垂足為D,連接DC,若BOC的面積是6,則DOC的面積是(  )

A. 52B. 5+2C. 46D. 3+

【答案】D

【解析】

先利用△BOC的面積得出m=,表示出Aa,),進而得出,即(an2+12an-24=0,即可得出結論.

∵直線y=mx+n與兩坐標軸分別交于點B,C

B-,0),C0,n),
OB=OC=n,

BOC的面積是6,

,

=12,

m=,

Aa,),

∵點A在直線y=mx+n上,

am+n=,

∴(an2+12an-24=0,

an=-6-2(舍)或an=-6+2,

SCOD=OC×OD=n×a=-3+.

故選:D

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】“校園手機”現(xiàn)象越來越受到社會的關注.“寒假”期間,某校小記者隨機調(diào)查了某地區(qū)若干名學生和家長對中學生帶手機現(xiàn)象的看法,統(tǒng)計整理并制作了如下的統(tǒng)計圖:

(1)求這次調(diào)查的家長人數(shù),并補全圖1;

(2)求圖2中表示家長“贊成”的圓心角的度數(shù);

(3)已知某地區(qū)共6500名家長,估計其中反對中學生帶手機的大約有多少名家長?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為選拔一名選手參加美麗邵陽,我為家鄉(xiāng)做代言主題演講比賽,經(jīng)研究,按圖所示的項目和權數(shù)對選拔賽參賽選手進行考評(因排版原因統(tǒng)計圖不完整).下表是李明、張華在選拔賽中的得分情況:

項目

選手

服裝

普通話

主題

演講技巧

李明

85

70

80

85

張華

90

75

75

80

結合以上信息,回答下列問題:

(1)求服裝項目的權數(shù)及普通話項目對應扇形的圓心角大;

(2)求李明在選拔賽中四個項目所得分數(shù)的眾數(shù)和中位數(shù);

(3)根據(jù)你所學的知識,幫助學校在李明、張華兩人中選擇一人參加美麗邵陽,我為家鄉(xiāng)做代言主題演講比賽,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知矩形ABCD的三個頂點A(3,4)B(3,0)、C(1,0).以D為頂點的拋物線yax2+bx+c過點B.動點P從點D出發(fā),沿DC邊向點C運動,同時動點Q從點B出發(fā),沿BA邊向點A運動,點PQ運動的速度均為每秒1個單位,運動的時間為t秒.過點PPECDBD于點E,過點EEFAD于點F,交拋物線于點G

(1)求拋物線的解析式;

(2)t為何值時,四邊形BDGQ的面積最大?最大值為多少?

(3)動點P、Q運動過程中,是否存在某一時刻,使△PQF是等腰三角形?若存在,請求出此時t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某個周末,小麗從家去園博園參觀,同時媽媽參觀結束從園博園回家,小麗剛到園博園就發(fā)現(xiàn)要下雨,于是立即按原路返回,追上媽媽后,兩人一同回家(小麗和媽媽始終在同一條筆直的公路上行走)如圖是兩人離家的距離y()與小麗出發(fā)的時間x()之間的函數(shù)圖象,請根據(jù)圖象信息回答下列問題:

(1)求線段BC的解析式;

(2)求點F的坐標,并說明其實際意義;

(3)與按原速度回家相比,媽媽提前了幾分鐘到家?并直接寫出小麗與媽媽何時相距800米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一次數(shù)學綜合實踐活動中,小明計劃測量城門大樓的高度,在點B處測得樓頂A的仰角為22°,他正對著城樓前進21米到達C處,再登上3米高的樓臺D處,并測得此時樓頂A的仰角為45°

1)求城門大樓的高度;

2)每逢重大節(jié)日,城門大樓管理處都要在AB之間拉上繩子,并在繩子上掛一些彩旗,請你求出AB之間所掛彩旗的長度(結果保留整數(shù)).(參考數(shù)據(jù):sin22°≈,cos22°≈,tan22°≈

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等腰直角三角形ABC在平面直角坐標系中,直角邊ACx軸上,OAC的中點,點A的坐標為(1,0),將ABC繞點A順時針旋轉(zhuǎn)135°,使斜邊AB的對應邊A′B′x軸重合,則點C的對應點C'的坐標為( 。

A. 2,2B. 1+ C. 1+,2D. 2,2+

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,點EBC邊上,且AEBC于點E,DE平分∠CDA.若BEEC=1∶2,則∠BCD的度數(shù)為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,O為原點,點A(8,0)、點B(0,4),點C、D分別是邊OA、AB的中點.將△ACD繞點A順時針方向旋轉(zhuǎn),得△AC′D′,記旋轉(zhuǎn)角為α.

(I)如圖,連接BD′,當BD′∥OA時,求點D′的坐標;

(II)如圖,當α=60°時,求點C′的坐標;

(III)當點B,D′,C′共線時,求點C的坐標(直接寫出結果即可).

查看答案和解析>>

同步練習冊答案