【題目】如圖,在平面直角坐標(biāo)系中,已知矩形ABCD的三個頂點(diǎn)B(1,0),C(3,0),D(3,4).以A為頂點(diǎn)的拋物線y=ax2+bx+c過點(diǎn)C.動點(diǎn)P從點(diǎn)A出發(fā),沿線段AB向點(diǎn)B運(yùn)動.同時動點(diǎn)Q從點(diǎn)C出發(fā),沿線段CD向點(diǎn)D運(yùn)動.點(diǎn)P,Q的運(yùn)動速度均為每秒1個單位.運(yùn)動時間為t秒.過點(diǎn)P作PE⊥AB交AC于點(diǎn)E.

1)直接寫出點(diǎn)A的坐標(biāo),并求出拋物線的解析式;

2)過點(diǎn)EEFADF,交拋物線于點(diǎn)G,當(dāng)t為何值時,ACG的面積最大?最大值為多少?

3)在動點(diǎn)P,Q運(yùn)動的過程中,當(dāng)t為何值時,在矩形ABCD內(nèi)(包括邊界)存在點(diǎn)H,使以CQ,E,H為頂點(diǎn)的四邊形為菱形?請直接寫出t的值.

【答案】(1)點(diǎn)A的坐標(biāo)為(1,4),拋物線的解析式為y=x2+2x+3;

(2)當(dāng)t=2時,SACG的最大值為1;

(3)t的值為20-8

【解析】試題分析:(1)根據(jù)矩形的性質(zhì)可以寫出點(diǎn)A得到坐標(biāo);由頂點(diǎn)A的坐標(biāo)可設(shè)該拋物線的頂點(diǎn)式方程為y=a(x-1)2+4,然后將點(diǎn)C的坐標(biāo)代入,即可求得系數(shù)a的值(利用待定系數(shù)法求拋物線的解析式);(2)利用待定系數(shù)法求得直線AC的方程y=-2x+6;由圖形與坐標(biāo)變換可以求得點(diǎn)P的坐標(biāo)(1,4-t),據(jù)此可以求得點(diǎn)E的縱坐標(biāo),將其代入直線AC方程可以求得點(diǎn)E或點(diǎn)G的橫坐標(biāo);然后結(jié)合拋物線方程、圖形與坐標(biāo)變換可以求得GE=4-、點(diǎn)A到GE的距離為,C到GE的距離為2-;最后根據(jù)三角形的面積公式可以求得S△ACG=S△AEG+S△CEG=-(t-2)2+1,由二次函數(shù)的最值可以解得t=2時,S△ACG的最大值為1;(3)因為菱形是鄰邊相等的平行四邊形,所以點(diǎn)H在直線EF上.

試題解析:

(1)A(14).

由題意知,可設(shè)拋物線解析式為y=a(x1)2+4,

∵拋物線過點(diǎn)C(3,0),

0=a(31)2+4,

解得,a=1,

∴拋物線的解析式為y=(x1)2+4,y=x2+2x+3.

(2)A(14),C(3,0)

∴可求直線AC的解析式為y=2x+6.

∵點(diǎn)P(1,4t).

∴將y=4t代入y=2x+6,解得點(diǎn)E的橫坐標(biāo)為x=1+.

∴點(diǎn)G的橫坐標(biāo)為1+,代入拋物線的解析式中,可求點(diǎn)G的縱坐標(biāo)為4.

GE=(4)(4t)=t.

又∵點(diǎn)AGE的距離為,CGE的距離為2,

SACG=SAEG+SCEG=EG+EG(2)

=2(t)= (t2)2+1.

當(dāng)t=2,SACG的最大值為1.

(3)第一種情況如圖1所示,點(diǎn)HAC的上方,由四邊形CQEH是菱形知CQ=CE=t,

根據(jù)APE∽△ABC,知

,,解得t=20

第二種情況如圖2所示,

點(diǎn)HAC的下方由四邊形CQHE是菱形知CQ=QE=EH=HC=t,PE=t,EM=2tMQ=42t.

則在直角三角形EMQ,根據(jù)勾股定理知EM2+MQ2=EQ2,(2t)2+(42t)2=t2,

解得,t1=,t2=4(不合題意,舍去).

綜上所述,t=20t=.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖中顯示了10名同學(xué)平均每周用于閱讀課外書的時間和用于看電視的時間(單位:小時)。

(1)用有序?qū)崝?shù)對表示圖中各點(diǎn)。

(2)圖中有一個點(diǎn)位于方格的對角線上,這表示什么意思?

(3)圖中方格紙的對角線的左上方的點(diǎn)有什么共同的特點(diǎn)?它右下方的點(diǎn)呢?

(4)估計一下你每周用于閱讀課外書的時間和用于看電視的時間,在圖上描出來,這個點(diǎn)位于什么位置?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了掌握我市中考模擬數(shù)學(xué)試題的命題質(zhì)量與難度系數(shù),命題教師赴我市某地選取一個水平相當(dāng)?shù)某跞昙夁M(jìn)行調(diào)研,命題教師將隨機(jī)抽取的部分學(xué)生成績(得分為整數(shù),滿分為160分)分為5組:第一組85100;第二組100115;第三組115130;第四組130145;第五組145160,統(tǒng)計后得到如圖1和如圖2所示的頻數(shù)分布直方圖(每組含最小值不含最大值)和扇形統(tǒng)計圖,觀察圖形的信息,回答下列問題:

1)本次調(diào)查共隨機(jī)抽取了該年級多少名學(xué)生?并將頻數(shù)分布直方圖補(bǔ)充完整;

2)若將得分轉(zhuǎn)化為等級,規(guī)定:得分低于100分評為“D”100130分評為“C”,130145分評為“B”,145160分評為“A”,那么該年級1600名學(xué)生中,考試成績評為“B”的學(xué)生大約有多少名?

3)如果第一組有兩名女生和兩名男生,第五組只有一名是男生,針對考試成績情況,命題教師決定從第一組、第五組分別隨機(jī)選出一名同學(xué)談?wù)勛鲱}的感想,請你用列表或畫樹狀圖的方法求出所選兩名學(xué)生剛好是一名女生和一名男生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】畫圖并計算:已知線段AB=2 cm,延長線段AB至點(diǎn)C,使得2BC=AB,再反向延長AC至點(diǎn)D,使得AD=AC.

(1)準(zhǔn)確地畫出圖形,并標(biāo)出相應(yīng)的字母;

(2)線段DC的中點(diǎn)是哪個?線段AB的長是線段DC長的幾分之幾?

(3)求出線段BD的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“中華人民共和國道路交通管理條例”規(guī)定:小汽車在城街路上行駛速度不得超過70km/h.如圖,一輛小汽車在一條城市街路上直道行駛,某一時刻剛好行駛到路對面車速檢測儀A處的正前方30m的C處,過了2s后,測得小汽車與車速檢測儀間距離為50m,這輛小汽車超速了嗎?(參考數(shù)據(jù)轉(zhuǎn)換:1m/s=3.6km/h)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,數(shù)軸上點(diǎn)A、B所表示的數(shù)分別是4,8,

1請用尺規(guī)作圖的方法確定原點(diǎn)O的位置(不寫做法,保留作圖痕跡)

2已知動點(diǎn)M從點(diǎn)A出發(fā),以每秒1個單位長度的速度沿數(shù)軸向左勻速運(yùn)動,同時點(diǎn)N從點(diǎn)A出發(fā),以每秒2個單位長度的速度沿數(shù)軸向右勻速運(yùn)動,設(shè)運(yùn)動時間為tt>0.

①運(yùn)動1秒后,點(diǎn)M表示的數(shù)是_____,點(diǎn)N表示的數(shù)為______

②運(yùn)動t秒后,點(diǎn)M表示的數(shù)是_____,點(diǎn)N表示的數(shù)為______

③若線段BN=2,求此時t的大小以及相應(yīng)的M所表示的數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2017年遵義市固定資產(chǎn)總投資計劃為2580億元,將2580億元用科學(xué)記數(shù)法表示為(
A.2.58×1011
B.2.58×1012
C.2.58×1013
D.2.58×1014

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AB=15,AC=13,高AD=12,則△ABC中BC邊的長為(
A.9
B.5
C.14
D.4或14

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一元二次方程3x2﹣4x+1=0的根的情況為(
A.沒有實(shí)數(shù)根
B.只有一個實(shí)數(shù)根
C.兩個相等的實(shí)數(shù)根
D.兩個不相等的實(shí)數(shù)根

查看答案和解析>>

同步練習(xí)冊答案