【題目】如圖,在ABCD中,∠B=45°,過(guò)點(diǎn)C作CE⊥AD于點(diǎn),連結(jié)AC,過(guò)點(diǎn)D作DF⊥AC于點(diǎn)F,交CE于點(diǎn)G,連結(jié)EF.
(1)若DG=8,求對(duì)角線AC的長(zhǎng);
(2)求證:AF+FG=EF.
【答案】(1)8;(2)詳見(jiàn)解析.
【解析】
(1)根據(jù)平行四邊形的性質(zhì)得到∠ADC=∠B=45°,推出△CDE是等腰直角三角形,得到CE=DE,∠DEC=∠AEC=90°,求得∠EDG=∠ECA,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論;
(2)過(guò)E作EH⊥EF交DF于H,于是得到∠DEH=∠CEF,根據(jù)全等三角形的性質(zhì)得到EF=EH,DH=CF,求得AF=HG,根據(jù)等腰直角三角形的性質(zhì)即可得到結(jié)論.
解:(1)∵在ABCD中,∠B=45°,
∴∠ADC=∠B=45°,
∵CE⊥AD,
∴△CDE是等腰直角三角形,
∴CE=DE,∠DEC=∠AEC=90°,
∵DF⊥AC,
∴∠CFD=∠DEC=90°,
∴∠DGE=∠CGF,
∴∠EDG=∠ECA,
在△DEG≌△CEA中,
,
∴△DEG≌△CEA(ASA),
∴AC=DG=8;
(2)過(guò)E作EH⊥EF交DF于H,
∵∠FEH=∠DEC=90°,
∴∠DEH=∠CEF,
∵∠EDH=∠ECF,DE=CE,
在△DEH和△CEF中,
,
∴△DEH≌△CEF(ASA),
∴EF=EH,DH=CF,
∴AC﹣CF=DG﹣DH,
即AF=HG,
∵FH=FG+GH=EF,
∴AF+FG=EF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,AB=4,AC=6,BC=9,點(diǎn)M為AB的中點(diǎn),在線段AC上取點(diǎn)N,使△AMN與△ABC相似,求MN的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在□ABCD中,O是AC、BD的交點(diǎn),過(guò)點(diǎn)O 與AC垂直的直線交邊AD于點(diǎn)E,若□ABCD的周長(zhǎng)為22cm,則△CDE的周長(zhǎng)為( ).
A. 8cm B. 10cm C. 11cm D. 12cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在長(zhǎng)方形ABCD中,AB=8,AD=7.點(diǎn)P是長(zhǎng)方形內(nèi)一動(dòng)點(diǎn),點(diǎn)Q是DC邊上的動(dòng)點(diǎn).若△ABP的面積為12,則AP+BP+PQ的最小值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,一次函數(shù)y=﹣x+b的圖象與y軸交于點(diǎn)B(0,2),與反比例函數(shù)y=的圖象交于點(diǎn)A(4,﹣1).
(1)求反比例函數(shù)的表達(dá)式和一次函數(shù)表達(dá)式;
(2)如果點(diǎn)P是x軸上的一點(diǎn),且△ABP的面積是3,求P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) 的圖象如圖所示,則當(dāng)函數(shù) 的圖象在x軸上方時(shí),x的取值范圍為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在銳角三角形ABC中,直線l為BC的中垂線,射線m為∠ABC的角平分線,直線l與m相交于點(diǎn)P.若∠BAC=60°,∠ACP=24°,則∠ABP的度數(shù)是( )
A. 24° B. 30° C. 32° D. 36°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠BAC=90°,點(diǎn)D是BC上一點(diǎn),將△ABD沿AD翻折后得到△AED,邊AE交BC于點(diǎn)F.
(1)如圖①,當(dāng)AE⊥BC時(shí),寫(xiě)出圖中所有與∠B相等的角: ;所有與∠C相等的角: .
(2)若∠C-∠B=50°,∠BAD=x°(0<x≤45) .
① 求∠B的度數(shù);
②是否存在這樣的x的值,使得△DEF中有兩個(gè)角相等.若存在,并求x的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB∥CD,分別探討下面三個(gè)圖形中∠AEC與∠EAB,∠ECD之間的關(guān)系,請(qǐng)你從所得到的關(guān)系中任選一個(gè)加以證明.
(1)在圖1中,∠AEC與∠EAB,∠ECD之間的關(guān)系是:________________.
(2)在圖2中,∠AEC與∠EAB,∠ECD之間的關(guān)系是:________________.
(3)在圖3中,∠AEC與∠EAB,∠ECD之間的關(guān)系是:________________.
(4)在圖______中,求證:________________.(并寫(xiě)出完整的證明過(guò)程)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com