拋物線(xiàn)y=a(x+6)2-3與x軸相交于A,B兩點(diǎn),與y軸相交于C,D為拋物線(xiàn)的頂點(diǎn),直線(xiàn)DE⊥x軸,垂足為E,AE2=3DE.
(1)求這個(gè)拋物線(xiàn)的解析式;
(2)P為直線(xiàn)DE上的一動(dòng)點(diǎn),以PC為斜邊構(gòu)造直角三角形,使直角頂點(diǎn)落在x軸上.若在x軸上的直角頂點(diǎn)只有一個(gè)時(shí),求點(diǎn)P的坐標(biāo);
(3)M為拋物線(xiàn)上的一動(dòng)點(diǎn),過(guò)M作直線(xiàn)MN⊥DM,交直線(xiàn)DE于N,當(dāng)M點(diǎn)在拋物線(xiàn)的第二象限的部分上運(yùn)動(dòng)時(shí),是否存在使點(diǎn)E三等分線(xiàn)段DN的情況?若存在,請(qǐng)求出所有符合條件的M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】分析:(1)根據(jù)已知的拋物線(xiàn)解析式,可求得頂點(diǎn)D的坐標(biāo),即可求得DE、OE的長(zhǎng),根據(jù)AE2=3DE,可求出AE的值,進(jìn)而可得到點(diǎn)A的坐標(biāo),然后將其代入拋物線(xiàn)的解析式中,即可求得待定系數(shù)a的值,從而確定該拋物線(xiàn)的解析式.
(2)設(shè)出點(diǎn)P的縱坐標(biāo),若以PC為斜邊的直角三角形在x軸上只有一個(gè)直角頂點(diǎn),那么以PC為直徑的圓與x軸相切,可根據(jù)P、C的坐標(biāo)表示出PC中點(diǎn)Q的坐標(biāo)和PC的長(zhǎng),令Q的縱坐標(biāo)等于PC的一半,即可得到關(guān)于P點(diǎn)縱坐標(biāo)的方程,從而求出點(diǎn)P的坐標(biāo).
(3)此題比較復(fù)雜,需要分兩種情況考慮:
①NE=2DE,此時(shí)N(-6,6),可設(shè)出點(diǎn)M的坐標(biāo),然后分別表示出直線(xiàn)MN、直線(xiàn)MD的斜率,若兩條直線(xiàn)互相垂直,那么它們的斜率的積為-1,可據(jù)此得到關(guān)于M點(diǎn)橫、縱坐標(biāo)的關(guān)系式,聯(lián)立拋物線(xiàn)的解析式即可得到點(diǎn)M的坐標(biāo);
②2NE=DE,方法同①.
解答:解:(1)易知拋物線(xiàn)的頂點(diǎn)D(-6,-3),則DE=3,OE=6;
∵AE2=3DE=9,
∴AE=3,即A(-3,0);
將A點(diǎn)坐標(biāo)代入拋物線(xiàn)的解析式中,
得:a(-3+6)2-3=0,
即a=,
即拋物線(xiàn)的解析式為:y=(x+6)2-3=x2+4x+9.


(2)設(shè)點(diǎn)P(-6,t),易知C(0,9);
則PC的中點(diǎn)Q(-3,);
易知:PC=;
若以PC為斜邊構(gòu)造直角三角形,在x軸上的直角頂點(diǎn)只有一個(gè)時(shí),以PC為直徑的圓與x軸相切,即:
||=,
解得t=1,
故點(diǎn)P(-6,1),
當(dāng)點(diǎn)P與點(diǎn)E重合時(shí),由拋物線(xiàn)的解析式可知,A(-3,0),B(-9,0).
所以P(-6,0),
故點(diǎn)P的坐標(biāo)為(-6,1)或(-6,0),


(3)設(shè)點(diǎn)M(a,b)(a<0,b>0),分兩種情況討論:
①當(dāng)NE=2DE時(shí),NE=6,即N(-6,6),已知D(-6,-3),則有:
直線(xiàn)MN的斜率:k1=,直線(xiàn)MD的斜率:k2=
由于MN⊥DM,則k1•k2==-1,
整理得:a2+b2+12a-3b+18=0…(△),
由拋物線(xiàn)的解析式得:a2+4a+9=b,
整理得:a2+12a-3b+27=0…(□);
(△)-(□)得:b2=9,即b=3(負(fù)值舍去),
將b=3代入(□)得:a=-6+3,a=-6-3,
故點(diǎn)M(-6+3,3)或(-6-3,3);
②當(dāng)2NE=DE時(shí),NE=,即N(-6,),已知D(-6,-3),
則有:直線(xiàn)MN的斜率:k1=,直線(xiàn)DM的斜率:k2=;
由題意得:k1•k2==-1,
整理得:a2+b2+b+12a+=0,
而a2+12a-3b+27=0;兩式相減,
得:2b2+9b+9=0,
解得b=-2,b=-,(均不符合題意,舍去);
綜上可知:存在符合條件的M點(diǎn),且坐標(biāo)為:M(-6+3,3)或(-6-3,3).
點(diǎn)評(píng):此題是二次函數(shù)的綜合題,涉及到二次函數(shù)解析式的確定、直角三角形的判定和性質(zhì)、圓周角定理、直線(xiàn)與圓的位置關(guān)系、互相垂直兩直線(xiàn)的斜率關(guān)系等重要知識(shí),綜合性強(qiáng),難度很大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,直線(xiàn)y=
4
3
x-4與x軸交于點(diǎn)A,與y軸交于點(diǎn)C,已知二次函數(shù)y=
4
3
x2+bx+c的圖象經(jīng)過(guò)點(diǎn)精英家教網(wǎng)A和C,和x軸的另一個(gè)交點(diǎn)為B.
(1)求該二次函數(shù)的關(guān)系式;
(2)直接寫(xiě)出該拋物線(xiàn)的對(duì)稱(chēng)軸及頂點(diǎn)M的坐標(biāo);
(3)求四邊形ABCM的面積S.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

求過(guò)(-1,0),(3,0),(1,-5)三點(diǎn)的拋物線(xiàn)的解析式,并畫(huà)出該拋物線(xiàn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

拋物線(xiàn)y=(k2-2)x2-4kx+m的對(duì)稱(chēng)軸是直線(xiàn)x=2,且它的最低點(diǎn)在直線(xiàn)y=-2x+2上,求:
(1)函數(shù)解析式;
(2)若拋物線(xiàn)與x軸交點(diǎn)為A、B與y軸交點(diǎn)為C,求△ABC面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知拋物線(xiàn)C1:y=x2-2x的圖象如圖所示,把C1的圖象沿y軸翻折,得到拋物線(xiàn)C2的圖象,拋物線(xiàn)C1與拋物線(xiàn)C2的圖象合稱(chēng)圖象C3
(1)求拋物線(xiàn)C1的頂點(diǎn)A坐標(biāo),并畫(huà)出拋物線(xiàn)C2的圖象;
(2)若直線(xiàn)y=kx+b與拋物線(xiàn)y=ax2+bx+c(a≠0)有且只有一個(gè)交點(diǎn)時(shí),稱(chēng)直線(xiàn)與拋物線(xiàn)相切.若直線(xiàn)y=x+b與拋物線(xiàn)C1相切,求b的值;
(3)結(jié)合圖象回答,當(dāng)直線(xiàn)y=x+b與圖象C3有兩個(gè)交點(diǎn)時(shí),b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,一單桿高2.2m,兩立柱之間的距離為1.6m,將一根繩子的兩端栓于立柱與鐵杠結(jié)合處,繩子自然下垂呈拋物線(xiàn)狀.
(1)一身高0.7m的小孩站在離立柱0.4m處,其頭部剛好觸上繩子,求繩子最低點(diǎn)到地面的距離;
(2)為供孩子們打秋千,把繩子剪斷后,中間系上一塊長(zhǎng)為0.4米的木板,除掉系木板用去的繩子后,兩邊的繩子正好各為2米,木板與地面平行,求這時(shí)木板到地面的距離.(供選用數(shù)據(jù):
3.36
≈1.8,
3.64
≈1.9,
4.39
≈2.1)
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊(cè)答案