精英家教網 > 初中數學 > 題目詳情

【題目】邊長為2的正方形ABCDEAB的中點,P在射線DC上從D出發(fā)以每秒1個單位長度的速度運動,PPFDE,當運動時間為__________秒時,以點P、F、E為頂點的三角形與AED相似

【答案】1

【解析】∵四邊形ABCD是正方形,PF⊥DE,

∴∠A=∠DFP=∠ADC=90°,

∴∠ADE+∠EDP=∠EDP+∠DPF=90°,

∴∠ADE=∠FPD,

∴△ADE∽△FPD.

(1)如圖1,當∠DPE=90°時,易得△FPD∽△FEP,則△ADE∽△FEP,

此時四邊形AEPD是矩形,

∴DP=AE=1,

∴t=1,即當t=1時,△ADE∽△FEP;

(2)如圖2,DP=EP時,易得△FPE≌△FPD,則△FEP∽△ADE,

此時四邊形AEHD是矩形,

∴DH=AE=1,HP=x-1,HE=AD=2,

∴PE2=HE2+HP2=PD2,

,解得:

綜上所述,時,以點P、F、E為頂點的三角形與AED相似.

故答案為:1.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知ABC中,∠BAC=90°,用尺規(guī)過點A作一條直線,使其將ABC分成兩個相似的三角形,其作法不正確的是

A. B.

C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知△ABC中,∠ABC90°,ABBC,三角形的頂點在相互平行的三條直線l1,l2l3上,且l1l2之間的距離為1,l2,l3之間的距離為2,則AC的長是_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,甲、乙兩位同學在長方形的場地ABCD上繞著四周跑步,甲沿著ADCBA方向循環(huán)跑步,同時乙沿著BCDAB方向循環(huán)跑步,AB30米,BC50米,若甲速度為2/秒,乙速度3/秒.

1)設經過的時間為t秒,則用含t的代數式表示甲的路程為 米;

2)當甲、乙兩人第一次相遇時,求所經過的時間t為多少秒?

3)若甲改為沿著ABCDA的方向循環(huán)跑步,而乙仍按原來的方向跑步,兩人的速度不變,求經過多少秒,乙追上甲?

4)在(3)的條件下,當乙第一次追上甲后繼續(xù)跑步,則最少再經過秒乙又追上甲,這時兩人所處的位置在點P;直接寫出的值,在圖中標出點P,不要求書寫過程.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】二次函數y=ax2+c的圖象經過點A(﹣4,3),B(﹣2,6),點A關于拋物線對稱軸的對稱點為點C,點P是拋物線對稱軸右側圖象上的一點,點G(0,﹣1).

(1)求出點C坐標及拋物線的解析式;

(2)若以A,C,P,G為頂點的四邊形面積等于30時,求點P的坐標;

(3)若Q為線段AC上一動點,過點Q平行于y軸的直線與過點G平行于x軸的直線交于點M,將△QGM沿QG翻折得到△QGN,當點N在坐標軸上時,求Q點的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,長方形ABCD中,∠DAB=∠B=∠DCB=∠D90°,ADBC6ABCD10.點E為射線DC上的一個動點,把△ADE沿直線AE翻折得△ADE

1)當D′點落在AB邊上時,∠DAE   °;

2)如圖2,當E點與C點重合時,DCAB交點F,

①求證:AFFC;②求AF長.

3)連接DB,當∠ADB90°時,求DE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】再讀教材:

寬與長的比是 (約為0.618)的矩形叫做黃金矩形,黃金矩形給我們以協調,勻稱的美感.世界各國許多著名的建筑.為取得最佳的視覺效果,都采用了黃金矩形的設計,下面我們用寬為2的矩形紙片折疊黃金矩形.(提示; MN=2)

第一步,在矩形紙片一端.利用圖①的方法折出一個正方形,然后把紙片展平.

第二步,如圖②.把這個正方形折成兩個相等的矩形,再把紙片展平.

第三步,折出內側矩形的對角線 AB,并把 AB折到圖③中所示的AD處,

第四步,展平紙片,按照所得的點D折出 DE,使 DEND,則圖④中就會出現黃金矩形,

問題解決:

(1)圖③中AB=________(保留根號);

(2)如圖③,判斷四邊形 BADQ的形狀,并說明理由;

(3)請寫出圖④中所有的黃金矩形,并選擇其中一個說明理由.

(4)結合圖④.請在矩形 BCDE中添加一條線段,設計一個新的黃金矩形,用字母表示出來,并寫出它的長和寬.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下面是按規(guī)律排列的一列式子:

1個式子:

2個式子:;

3個式子:

……

1)分別計算出這三個式子的結果;

2)請按規(guī)律寫出第2019個式子的形式(中間部分用省略號,兩端部分必須寫詳細);

3)計算第2019個式子的結果.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知拋物線經過點A(﹣1,0),B(4,0),C(0,2)三點,點D與點C關于x軸對稱,點Px軸上的一個動點,設點P的坐標為(m,0),過點Px軸的垂線l交拋物線于點Q,交直線BD于點M.

(1)求該拋物線所表示的二次函數的表達式;

(2)已知點F(0,),當點Px軸上運動時,試求m為何值時,四邊形DMQF是平行四邊形?

(3)點P在線段AB運動過程中,是否存在點Q,使得以點B、Q、M為頂點的三角形與△BOD相似?若存在,求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案