【題目】如圖,平行四邊形的對(duì)角線相交于點(diǎn),點(diǎn)的中點(diǎn),連接并延長交的延長線于點(diǎn),連接

1)求證:

2)當(dāng),時(shí),請(qǐng)判斷四邊形的形狀,并證明你的結(jié)論.

3)當(dāng)四邊形是正方形時(shí),請(qǐng)判斷的形狀,并證明你的結(jié)論.

【答案】1)見解析;(2)平行四邊形ABDF是矩形,見解理由析;(3FBC為等腰直角三角形,證明見解析

【解析】

1)利用平行四邊形的性質(zhì),證明ABCD,然后通過證明△AGB≌△DGF 得出AB=DF即可解決問題;
2)結(jié)論:四邊形ABDF是矩形.先證明四邊形ABDF是平行四邊形,再根據(jù)對(duì)角線相等的平行四邊形是矩形判斷即可;

3)結(jié)論:△FBC為等腰直角三角形.由正方形的性質(zhì)得出∠BFD=45°,∠FGD=90°,根據(jù)平行四邊形的性質(zhì)推出BF=BC即可解決問題.

1)證明:四邊形ABCD是平行四邊形,

∴AB∥CD,AB=CD,

∴∠FDG=∠BAG,

點(diǎn)G AD的中點(diǎn),

∴AG=DG

∵∠FGD=∠BGA,

∴△AGB≌△DGFASA),

∴AB=DF

∴DF=DC

2)結(jié)論:四邊形ABDF是矩形,

理由:∵△AGB≌△DGF,

∴GF=GB

∵DG=AG,

四邊形ABDF是平行四邊形,

∵DG=DCDC=DF,

∴DF=DG,

在平行四邊形ABCD中,

∵∠ABC=120°

∴∠ADC=120°

∴∠FDG=60°,

∴△FDG為等邊三角形,

∴FG=DG,

∴AD=BF

四邊形ABDF是矩形.

3)當(dāng)四邊形ABDF是正方形時(shí),△FBC為等腰直角三角形.

證明:四邊形ABDF是正方形,

∴∠BFD=45°,∠FGD=90°,

四邊形ABCD是平行四邊形,

∴AD∥BC,

∴∠FBC =∠FGD = 90°

∴∠FCB = 45°=∠BFD,

∴BF=BC

∴△FBC為等腰直角三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O△ABC的外接圓,AB⊙O的直徑,D⊙O上一點(diǎn),OD⊥AC,垂足為E,連接BD.

(1)求證:BD平分∠ABC

(2) 當(dāng)∠ODB=30°時(shí),求證:BC=OD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)E、F分別在BC、CD上移動(dòng),但AEF的距離AH始終保持與AB長相等,問在E、F移動(dòng)過程中:

(1)∠EAF的大小是否有變化?請(qǐng)說明理由.

(2)△ECF的周長是否有變化?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道平行四邊形有很多性質(zhì),現(xiàn)在如果我們把平行四邊形沿著它的一條對(duì)角線翻折,會(huì)發(fā)現(xiàn)這其中還有更多的結(jié)論.

(發(fā)現(xiàn)結(jié)論)

1)如圖,在□ABCD中,AB≠BC,將ABC沿AC翻折至AB′C,連結(jié)B′D,發(fā)現(xiàn)兩個(gè)有趣的結(jié)論:①EAC是等腰三角形 AC//B′D 請(qǐng)你選擇其中一個(gè)結(jié)論加以證明

(結(jié)論運(yùn)用)

2)在□ABCD中,已知:BC=2,∠B=60°,將ABC沿AC翻折至AB′C,連結(jié)B′D(如上圖).若四邊形ACDB′是矩形,求AC的長.

(方法拓展)

3)若 =k,且以AC、D、B′為頂點(diǎn)的四邊形為正方形,則k的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校團(tuán)委舉辦了一次中國夢(mèng)我的夢(mèng)演講比賽滿分10分,學(xué)生得分均為整數(shù),成績達(dá)6分以上(含6分)為合格,達(dá)到9分以上(含9分)為優(yōu)秀.如圖所示是這次競賽中甲、乙兩組學(xué)生成績分布的條形統(tǒng)計(jì)圖.

1)補(bǔ)充完成下列的成績統(tǒng)計(jì)分析表:

組別

平均分

中位數(shù)

方差

合格率

優(yōu)秀率

6

3.41

90%

20%

7.1

1.69

80%

10%

2)小明同學(xué)說:這次競賽我得了7分,在我們小組中排名屬中游略偏上!觀察上表可知,小明是______組學(xué)生;(填

3)甲組同學(xué)說他們組的合格率、優(yōu)秀率均高于乙組,所以他們組的成績好于乙組.但乙組同學(xué)不同意甲組同學(xué)的說法,認(rèn)為他們組的成績要好于甲組.請(qǐng)你給出兩條支持乙組同學(xué)觀點(diǎn)的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以ABC的一邊為邊畫等腰三角形,使得它的第三個(gè)頂點(diǎn)在ABC的其他邊上,則可以畫出的不同的等腰三角形的個(gè)數(shù)最多為(  )

A. 4 B. 5 C. 6 D. 7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店銷售一種商品,通過記錄,發(fā)現(xiàn)該商品從開始銷售至銷售的第x天結(jié)束時(shí)(x為整數(shù))的總銷量y(件)滿足二次函數(shù)關(guān)系,銷量情況記錄如下表:

x

0

1

2

3

y

0

58

112

162

(1)求yx之間的函數(shù)關(guān)系式(不需要寫自變量的取值范圍);

(2)求:銷售到第幾天結(jié)束時(shí),該商品全部售完?

(3)若第m天的銷量為22件,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABC,AB=AC,D為直線BC上一點(diǎn),E為直線AC上一點(diǎn),AD=AE ,設(shè)BAD=α,CDE=β

(1)如圖,點(diǎn)D在線段BC上,點(diǎn)E在線段AC上.

如果ABC=60°,ADE=70° 那么α=_______,β=_______

α、β之間的關(guān)系式.

(2)是否存在不同于以上中的αβ之間的關(guān)系式?存在,求出這個(gè)關(guān)系式,不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓 O 的半徑為 1,過點(diǎn) A(2,0)的直線與圓 O 相切于點(diǎn) B, y 軸相交于點(diǎn) C.

(1) AB 的長;

(2)求直線 AB 的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案