【題目】如圖,圓 O 的半徑為 1,過點(diǎn) A(2,0)的直線與圓 O 相切于點(diǎn) B, y 軸相交于點(diǎn) C.

(1) AB 的長;

(2)求直線 AB 的解析式.

【答案】(1)AB= ;(2) y=— x+ .

【解析】

(1)由于直線AC是⊙O的切線,B為切點(diǎn),所以需連接OB,利用切線的性質(zhì)得OBAB,在RtAOB中,利用勾股定理,求出AB的長.

(2)要求直線AC的解析式,需知A、C兩點(diǎn)的坐標(biāo),設(shè)解析式為y=kx+b,將A、C兩點(diǎn)代入求出k、b的值.

(1)連接OB,則OAB為直角三角形,

AB=

(2)∵∠A=A,ABO=AOC,

∴△ABO∽△AOC.

,即:

解得:OC=

∴點(diǎn)C坐標(biāo)為(0,).

設(shè)一次函數(shù)的解析式為:y=kx+,

將點(diǎn)A(2,0)代入,解得:k=﹣,

∴以直線AB為圖象的一次函數(shù)的解析式為:y=﹣x+

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形的對角線相交于點(diǎn),點(diǎn)的中點(diǎn),連接并延長交的延長線于點(diǎn),連接

1)求證:

2)當(dāng),時(shí),請判斷四邊形的形狀,并證明你的結(jié)論.

3)當(dāng)四邊形是正方形時(shí),請判斷的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù).

(1)證明:不論取何值,該函數(shù)圖像與軸總有公共點(diǎn);

(2)若該函數(shù)的圖像與軸交于點(diǎn)(0,3),求出頂點(diǎn)坐標(biāo)并畫出該函數(shù)圖像;

(3)在(2)的條件下,觀察圖像,解答下列問題:

①不等式的的解集是 ;

②若一元二次方程有兩個(gè)不相等的實(shí)數(shù)根,則的取值范圍是 ;

③若一元二次方程的范圍內(nèi)有實(shí)數(shù)根,則的取

值范圍是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OP平分∠BOA,PC⊥OA,PD⊥OB,垂足分別是C、D,則下列結(jié)論中錯(cuò)誤的是( 。

A. PC=PD B. OC=OD C. OC=OP D. ∠CPO=∠DPO

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CDAB于點(diǎn)G.點(diǎn)FCD上一點(diǎn),且滿足,連接AF并延長交⊙O于點(diǎn)E.連接AD、DE,若CF=2,AF=3.給出下列結(jié)論:

①△ADF∽△AED;FG=2;tanE=;SDEF=4

其中正確的是( 。

A. ①②④ B. ①②③ C. ②③④ D. ①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù) y=ax2﹣2ax+c(a>0)的圖象與 x 軸的負(fù)半軸和正半軸分別交于 A、B 兩點(diǎn),與 y 軸交于點(diǎn) C,它的頂點(diǎn)為 P,直線 CP 與過點(diǎn)B 且垂直于 x 軸的直線交于點(diǎn) D,且 CP:PD=1:2,tan∠PDB=

(1) A、B 兩點(diǎn)的坐標(biāo)分別為 A( , ); B( );

(2)求這個(gè)二次函數(shù)的解析式;

(3)在拋物線的對稱軸上找一點(diǎn)M 使|MC﹣MB|的值最大,則點(diǎn)M 的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,D、E分別是AB、AC的中點(diǎn),過點(diǎn)EEF∥AB,交BC于點(diǎn)F

1)求證:四邊形DBFE是平行四邊形;

2)當(dāng)△ABC滿足什么條件時(shí),四邊形DBEF是菱形?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一段拋物線y=﹣xx﹣2)(0≤x≤2)記為C1,它與x軸交于兩點(diǎn)O,A1;C1A1旋轉(zhuǎn)180°得到C2,交x軸于A2;將C2A2旋轉(zhuǎn)180°得到C3,交x軸于A3;…如此進(jìn)行下去,直至得到C6,若點(diǎn)P(11,m)在第6段拋物線C6,m=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在長方形ABCD中,AB=CD=5 cm, BC=12 cm,點(diǎn)P從點(diǎn)B出發(fā),以2cm/s的速度沿BC向點(diǎn)C運(yùn)動(dòng),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為ts

1PC=___cm(用含t的式子表示)

2)當(dāng)t為何值時(shí),△ABP≌△DCP?.

3)如圖2,當(dāng)點(diǎn)P從點(diǎn)B開始運(yùn)動(dòng),此時(shí)點(diǎn)Q從點(diǎn)C出發(fā),以vcm/s的速度沿CD向點(diǎn)D運(yùn)動(dòng),是否存在這樣的v值,使得某時(shí)刻△ABP與以PQ,C為頂點(diǎn)的直角三角形全等?若存在,請求出v的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案