【題目】如圖,正方形ABCD中,AB=8cm,對角線AC,BD相交于點O,點E,F(xiàn)分別從B,C兩點同時出發(fā),以1cm/s的速度沿BC,CD運動,到點C,D時停止運動,設運動時間為t(s),△OEF的面積為s(cm2),則s(cm2)與t(s)的函數(shù)關系可用圖象表示為( )
A.
B.
C.
D.
【答案】B
【解析】解:根據(jù)題意BE=CF=t,CE=8﹣t,
∵四邊形ABCD為正方形,
∴OB=OC,∠OBC=∠OCD=45°,
∵在△OBE和△OCF中
,
∴△OBE≌△OCF(SAS),
∴S△OBE=S△OCF ,
∴S四邊形OECF=S△OBC= ×82=16,
∴S=S四邊形OECF﹣S△CEF=16﹣ (8﹣t)t= t2﹣4t+16= (t﹣4)2+8(0≤t≤8),
∴s(cm2)與t(s)的函數(shù)圖象為拋物線一部分,頂點為(4,8),自變量為0≤t≤8.
故選:B.
【考點精析】認真審題,首先需要了解函數(shù)的圖象(函數(shù)的圖像是由直角坐標系中的一系列點組成;圖像上每一點坐標(x,y)代表了函數(shù)的一對對應值,他的橫坐標x表示自變量的某個值,縱坐標y表示與它對應的函數(shù)值).
科目:初中數(shù)學 來源: 題型:
【題目】如圖2,AB=AC,BE⊥AC于E,CF⊥AB于F,BE,CF交于D,則以下結論:①△ABE≌△ACF;②△BDF≌△CDE;③點D在∠BAC的平分線上.正確的是( )
A. ① B. ② C. ①② D. ①②③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】《九章算術》是我國古代數(shù)學的經(jīng)典著作,書中有一個問題:“今有黃金九枚,白銀一十一枚,稱之重適等.交易其一,金輕十三兩.問金、銀一枚各重幾何?”.意思是:甲袋中裝有黃金9枚(每枚黃金重量相同),乙袋中裝有白銀11枚(每枚白銀重量相同),稱重兩袋相等.兩袋互相交換1枚后,甲袋比乙袋輕了13兩(袋子重量忽略不計).問黃金、白銀每枚各重多少兩?設每枚黃金重x兩,每枚白銀重y兩,根據(jù)題意得( 。
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2002年8月在北京召開的國際數(shù)學家大會會標取材于我國古代數(shù)學家趙爽的《勾股圓方圖》,它是由四個全等的直角三角形與中間的小正方形拼成的一個大正方形(如圖).如果大正方形的面積是100,小正方形的面積是4,直角三角形較短的直角邊長為,較長的直角邊長為,那么的值是_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列函數(shù):①y=﹣x;②y=2x;③y=﹣ ;④y=x2(x<0),y隨x的增大而減小的函數(shù)有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB⊥CD,且AB=CD.E、F是AD上兩點,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF=c,則AD的長為( )
A. a+cB. b+cC. a﹣b+cD. a+b﹣c
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,P是對角線BD上一點,連接AP、,BF⊥AP于H,CP、BH延長線分別交AD邊于點E、F。
(1)求證:∠DAP=∠DCE
(2)求證:AE=FD
(3)猜想∠APE與∠FBD的數(shù)量關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】平行四邊形ABCD中,過點D作DE⊥AB于點E,點F在CD上,CF=AE,連接BF,AF.
(1)求證:四邊形BFDE是矩形;
(2)若AF平分∠BAD,且AE=3,DE=4,求矩形BFDE的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com