【題目】如圖①,長方形的兩邊長分別為m+1,m+7;如圖②,長方形的兩邊
長分別為m+2,m+4.(其中m為正整數(shù))
(1)圖①中長方形的面積 =
圖②中長方形的面積 =
比較: (填“<”、“=”或“>”)
(2)現(xiàn)有一正方形,其周長與圖①中的長方形周長相等,則
①求正方形的邊長(用含m的代數(shù)式表示);
②試探究:該正方形面積 與圖①中長方形面積 的差(即 - )是一個常數(shù),求出這個常數(shù).
(3)在(1)的條件下,若某個圖形的面積介于 、 之間(不包括 、 )并且面積為整數(shù),這樣的整數(shù)值有且只有10個,求m的值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)中,△ABC的三個頂點的坐標(biāo)分別是A(-2,3),B(-4,-1),C(2,0),將△ABC沿x軸方向向左平移_______至△A1B1C1的位置,點A、B、C的對應(yīng)點分別是A1、B1、C1,使點C1在原點處.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某種花卉每盆的盈利與每盆的株數(shù)有一定的關(guān)系,每盆植3株時,平均每株盈利4元;若每盆增加1株,平均每株盈利減少0.5元,要使每盆的盈利達(dá)到15元,每盆應(yīng)多植多少株?設(shè)每盆多植x株,則可以列出的方程是( )
A.(3+x)(4﹣0.5x)=15
B.(x+3)(4+0.5x)=15
C.(x+4)(3﹣0.5x)=15
D.(x+1)(4﹣0.5x)=15
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a , b為常數(shù),且三個單項式4xy2 , axyb , -5xy相加得到的和仍然是單項式。那么a和b的值可能是多少?說明你的理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,∠DAB=60°,AB=2AD,點 E、F分別是AB、CD的中點,過點A作AG∥BD,交CB的延長線于點G.
(1)求證:四邊形DEBF是菱形;
(2)請判斷四邊形AGBD是什么特殊四邊形?并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,長方形的兩邊長分別為m+1,m+7;如圖②,長方形的兩邊
長分別為m+2,m+4.(其中m為正整數(shù))
(1)圖①中長方形的面積 =
圖②中長方形的面積 =
比較: (填“<”、“=”或“>”)
(2)現(xiàn)有一正方形,其周長與圖①中的長方形周長相等,則
①求正方形的邊長(用含m的代數(shù)式表示);
②試探究:該正方形面積 與圖①中長方形面積 的差(即 - )是一個常數(shù),求出這個常數(shù).
(3)在(1)的條件下,若某個圖形的面積介于 、 之間(不包括 、 )并且面積為整數(shù),這樣的整數(shù)值有且只有10個,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的三邊AB、BC、CA長分別是20、30、40,其三條角平分線將△ABC分成三個三角形,則S△ABO:S△BCO:S△CAO等于 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com