【題目】如圖,某工程隊在工地上利用互相垂直的兩墻AE、AF,另兩邊用鐵柵欄圍成一個長方形場地ABCD,中間再用柵欄分割成兩個長方形.鐵柵欄總長180米,已知墻AE90米,墻AF60米.

1)設BC長為x米,長方形ABCD的面積為y,請寫出yx的函數(shù)關系,并寫出x的取值范圍;

2)當BC的值為多少時,長方形ABCD的面積最大?

3)若長方形ABCD的面積不能小于4000,請直接寫出BC邊長x(米)的取值范圍 .

【答案】1 ,(

2)證明見詳解.

3

【解析】

1)根據(jù)題目的已知條件可以直接得到函數(shù)關系式和x的取值范圍.

2)利用分解因式可以得到函數(shù):,所以當 時長方形ABCD的面積最大.

3)利用函數(shù)關系式和面積不能小于4000,可以得到:,求解后再根據(jù)x的取值范圍即可得到答案.

解(1)依題意得:

,( .

2)由(1)可知:

∴當 時長方形ABCD的面積最大.

3)依題意,得:
整理,得:
解得:,

又∵,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知:關于x的二次函數(shù)的圖象與x軸交于點A(1,0)和點B,與y軸交于點C(0,3),拋物線的對稱軸與x軸交于點D.

(1)求二次函數(shù)的表達式;

(2)y軸上是否存在一點P,使PBC為等腰三角形.若存在,請求出點P的坐標;

(3)有一個點M從點A出發(fā),以每秒1個單位的速度在AB上向點B運動,另一個點N從點D與點M同時出發(fā),以每秒2個單位的速度在拋物線的對稱軸上運動,當點M 達點B時,點M、N同時停止運動,問點M、N運動到何處時,MNB面積最大,試求出最大面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面材料:

麗麗這學期學習了軸對稱的知識,知道了像角、等腰三角形、正方形、圓等圖形都是軸對稱圖形.類比這一特性,麗麗發(fā)現(xiàn)像m+n,mnp等代數(shù)式,如果任意交換兩個字母的位置,式子的值都不變.太神奇了!于是她把這樣的式子命名為神奇對稱式.

她還發(fā)現(xiàn)像,(m-1)(n-1)等神奇對稱式都可以用表示.例如:.于是麗麗把稱為基本神奇對稱式 .

請根據(jù)以上材料解決下列問題:

(1)代數(shù)式① , ② , ③, ④ xy + yz + zx中,屬于神奇對稱式的是__________(填序號);

(2)已知.

q=__________(用含m,n的代數(shù)式表示);

② 若,則神奇對稱式=__________;

③ 若 ,求神奇對稱式的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,分別以直角的斜邊AB,直角邊AC為邊向外作等邊和等邊,FAB的中點,DEAB交于點G,EFAC交于點H,,.給出如下結論:

EFAC ②四邊形ADFE為菱形; ;

其中正確結論的是( )

A. ①②③B. ②③④C. ①③④D. ①②④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在RtABC中,ACB=90°,AC=6cm,BC=8cm,點P從A出發(fā)沿AC向C點以1厘米/秒的速度勻速移動;點Q從C出發(fā)沿CB向B點以2厘米/秒的速度勻速移動.點P、Q分別從起點同時出發(fā),移動到某一位置時所需時間為t秒.

(1)當t=2時,求線段PQ的長度;

(2)當t為何值時,PCQ的面積等于5cm2?

(3)在P、Q運動過程中,在某一時刻,若將PQC翻折,得到EPQ,如圖2,PE與AB能否垂直?若能,求出相應的t值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,,是中線,,則_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線y=x+4x軸、y軸分別交于點A,點B、點Dy軸的負半軸上,若將△OAB沿直線AD折疊,點B恰好落在x軸正半軸上的點C處。

1)求AB的長。

2)求點C和點D的坐標。

3y軸上是否存在一點PSPAB= SOCD?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某新型高科技商品,每件的售價比進價多6元,5件的進價相當于4件的售價,每天可售出200件,經(jīng)市場調查發(fā)現(xiàn),如果每件商品漲價1元,每天就會少賣5件.

1)該商品的售價和進價分別是多少元?

2)設每天的銷售利潤為w元,每件商品漲價x元,則當售價為多少元時,該商品每天的銷售利潤最大,最大利潤為多少元?

3)為增加銷售利潤,營銷部推出了以下兩種銷售方案:方案一:每件商品漲價不超過8元;方案二:每件商品的利潤至少為24元,請比較哪種方案的銷售利潤更高,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖 1,已知拋物線 y ax bx c 經(jīng)過 A3,0,B 1,0 ,C 0,3 三點,其頂點為D,對稱軸是直線l l x 軸交于點 H .

1)求該拋物線的解析式;

2)若點 P 是該拋物線對稱軸l 上的一個動點,求PBC 周長的最小值;

3)如圖 2,若 E 是線段 AD 上的一個動點( E A, D 不重合),過 E 點作平行于 y 軸的直線交拋物線于點 F ,交 x 軸于點G ,設點 E 的橫坐標為m ,四邊形 AODF 的面積為 S 。

①求 S m 的函數(shù)關系式;

S 是否存在最大值,若存在,求出最大值及此時點 E 的坐標,若不存在,請說明理由。

查看答案和解析>>

同步練習冊答案