【題目】某水果批發(fā)商經(jīng)銷一種高檔水果,如果每千克盈利10元,每天可售出500千克,經(jīng)市場調(diào)查發(fā)現(xiàn),在進貨價不變的情況下,若每千克漲價1元,日銷售量將減少20千克.
(1)現(xiàn)該商場要保證每天盈利6080元,同時又要顧客得到實惠,那么每千克應(yīng)漲價多少元?
(2)若該商場單純從經(jīng)濟角度看,每千克這種水果漲價多少元,能使商場獲利最多?
【答案】(1)應(yīng)該上漲6元;(2)每千克這種水果漲價7.5元,能使商場獲利最多.
【解析】
(1)設(shè)每千克水果漲了x元,那么就少賣了20x千克,根據(jù)市場每天銷售這種水果盈利了6080元,同時顧客又得到了實惠,可列方程求解;
(2)利用總利潤y=銷量×每千克利潤,進而求出最值即可.
(1)設(shè)每千克水果漲了x元,
(10+x)(500﹣20x)=6080,
解得:x1=6,x2=9.
因為要顧客得到實惠,所以應(yīng)該上漲6元.
(2)設(shè)總利潤為y,則:y=(10+x)(500﹣20x)=﹣20x2+300x+5000=﹣20(x﹣)2+6125,
即每千克這種水果漲價7.5元,能使商場獲利最多.
科目:初中數(shù)學 來源: 題型:
【題目】小明同學去某批零兼營的文具店,為學校美術(shù)小組的30名同學購買鉛筆和橡皮.若給全組每人各買2支鉛筆和1塊橡皮,那么需按零售價購買,共支付30元;若給全組每人各買3支鉛筆和2塊橡皮,那么可按批發(fā)價購買,共支付40.5元.已知1支鉛筆的批發(fā)價比零售價低0.05元,1塊橡皮的批發(fā)價比零售價低0.10元.請解決下列問題(均需寫出解題過程):
(1)問這家文具店每支鉛筆和每塊橡皮的批發(fā)價各是多少元?
(2)小亮同學用4元錢在這家文具店按零售價買同樣的鉛筆和橡皮(兩樣都要買,4元錢恰好用完),有哪幾種購買方案?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩車從A地出發(fā),沿同一路線駛向B地.甲車先出發(fā)勻速駛向B地,40min后,乙車出發(fā),勻速行駛一段時間后,在途中的貨站裝貨耗時半小時.由于滿載貨物,為了行駛安全,速度減少了50km/h,結(jié)果與甲車同時到達B地,甲乙兩車距A地的路程()與乙車行駛時間()之間的函數(shù)圖象如圖所示,則下列說法:①②甲的速度是60km/h;③乙出發(fā)80min追上甲;④乙車在貨站裝好貨準備離開時,甲車距B地150km;⑤當甲乙兩車相距30 km時,甲的行駛時間為1 h、3 h、h;其中正確的是__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)格中,給出了格點△ABC(頂點是網(wǎng)格線的交點)和點A1.
(1)畫出一個格點△A1B1C1,并使之是由△ABC平移后得到,且A與A1是對應(yīng)點;
(2)畫出點B關(guān)于直線AC的對稱點D,并指出AD可以看作由AB繞A點經(jīng)過怎樣的旋轉(zhuǎn)而得的;
(3)將△ABC繞點A逆時針旋轉(zhuǎn)一定角度,使得AB落在(2)中的線段AD的位置,請作出旋轉(zhuǎn)后的三角形,并求在這一旋轉(zhuǎn)過程中△ABC掃過的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD中,AB=6,點E在邊CD上,且CD=3DE.將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG、CF.則下列結(jié)論:①△ABG≌△AFG;②BG=CG;③AG∥CF;④S△EGC=S△AFE;⑤∠AGB+∠AED=145°.其中正確的個數(shù)是( )
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知一次函數(shù) y=kx-2 的圖象與 x 軸、y 軸分別交于 A,B 兩點,與反比例函數(shù)的圖象交于點 C,且 AB=AC,則 k 的值為( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在 Rt△ABC 中,∠C=90°,AD 平分∠BAC 交 BC 于點 D,O 為 AB 上一點,經(jīng)過點 A、D 的⊙O 分別交 AB、AC 于點 E、F,
(1)求證:BC 是⊙O 切線;
(2)設(shè) AB=m,AF=n,試用含 m、n 的代數(shù)式表示線段 AD 的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△ABC中,∠ACB=45°,D為AC上一點,AD=5,連接BD,將△ABD沿BD翻折至△EBD,點A的對應(yīng)點E點恰好落在邊BC上.延長BC至點F,連接DF,若CF=2,tan∠ABD=,則DF長為( 。
A.B.C.5D.7
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形紙片ABCD,AB=4,BC=3,點P在BC邊上,將△CDP沿DP折疊,點C落在點E處,PE、DE分別交AB于點O、F,且OP=OF,則cos∠ADF的值為( 。
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com