【題目】某水果批發(fā)商經(jīng)銷一種高檔水果,如果每千克盈利10元,每天可售出500千克,經(jīng)市場調(diào)查發(fā)現(xiàn),在進貨價不變的情況下,若每千克漲價1元,日銷售量將減少20千克.

1)現(xiàn)該商場要保證每天盈利6080元,同時又要顧客得到實惠,那么每千克應(yīng)漲價多少元?

2)若該商場單純從經(jīng)濟角度看,每千克這種水果漲價多少元,能使商場獲利最多?

【答案】(1)應(yīng)該上漲6元;(2)每千克這種水果漲價7.5元,能使商場獲利最多.

【解析】

1)設(shè)每千克水果漲了x元,那么就少賣了20x千克,根據(jù)市場每天銷售這種水果盈利了6080元,同時顧客又得到了實惠,可列方程求解;

2)利用總利潤y=銷量×每千克利潤,進而求出最值即可.

1)設(shè)每千克水果漲了x元,

10+x)(50020x)=6080,

解得:x16x29

因為要顧客得到實惠,所以應(yīng)該上漲6元.

2)設(shè)總利潤為y,則:y=(10+x)(50020x)=﹣20x2+300x+5000=﹣20x2+6125,

即每千克這種水果漲價7.5元,能使商場獲利最多.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】小明同學去某批零兼營的文具店,為學校美術(shù)小組的30名同學購買鉛筆和橡皮.若給全組每人各買2支鉛筆和1塊橡皮,那么需按零售價購買,共支付30元;若給全組每人各買3支鉛筆和2塊橡皮,那么可按批發(fā)價購買,共支付40.5元.已知1支鉛筆的批發(fā)價比零售價低0.05元,1塊橡皮的批發(fā)價比零售價低0.10元.請解決下列問題(均需寫出解題過程):

(1)問這家文具店每支鉛筆和每塊橡皮的批發(fā)價各是多少元?

(2)小亮同學用4元錢在這家文具店按零售價買同樣的鉛筆和橡皮(兩樣都要買,4元錢恰好用完),有哪幾種購買方案?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩車從A地出發(fā),沿同一路線駛向B地.甲車先出發(fā)勻速駛向B地,40min后,乙車出發(fā),勻速行駛一段時間后,在途中的貨站裝貨耗時半小時.由于滿載貨物,為了行駛安全,速度減少了50km/h,結(jié)果與甲車同時到達B地,甲乙兩車距A地的路程)與乙車行駛時間)之間的函數(shù)圖象如圖所示,則下列說法:①②甲的速度是60km/h;③乙出發(fā)80min追上甲;④乙車在貨站裝好貨準備離開時,甲車距B150km;⑤當甲乙兩車相距30 km時,甲的行駛時間為1 h3 h、h;其中正確的是__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)格中,給出了格點△ABC(頂點是網(wǎng)格線的交點)和點A1

1)畫出一個格點△A1B1C1,并使之是由△ABC平移后得到,且AA1是對應(yīng)點;

2)畫出點B關(guān)于直線AC的對稱點D,并指出AD可以看作由ABA點經(jīng)過怎樣的旋轉(zhuǎn)而得的;

3)將△ABC繞點A逆時針旋轉(zhuǎn)一定角度,使得AB落在(2)中的線段AD的位置,請作出旋轉(zhuǎn)后的三角形,并求在這一旋轉(zhuǎn)過程中△ABC掃過的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,AB=6,點E在邊CD上,且CD=3DE.將ADE沿AE對折至AFE,延長EF交邊BC于點G,連接AG、CF.則下列結(jié)論:①△ABG≌△AFG;②BG=CG;③AGCF;④SEGC=SAFE;⑤∠AGB+∠AED=145°.其中正確的個數(shù)是( )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知一次函數(shù) y=kx-2 的圖象與 x 軸、y 軸分別交于 A,B 兩點,與反比例函數(shù)的圖象交于點 C,且 AB=AC,則 k 的值為( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在 RtABC 中,∠C=90°,AD 平分∠BAC BC 于點 D,O AB 上一點,經(jīng)過點 A、D 的⊙O 分別交 ABAC 于點 E、F,

1)求證:BC 是⊙O 切線;

2)設(shè) AB=mAF=n,試用含 mn 的代數(shù)式表示線段 AD 的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,∠ACB=45°,DAC上一點,AD=5,連接BD,將△ABD沿BD翻折至△EBD,點A的對應(yīng)點E點恰好落在邊BC上.延長BC至點F,連接DF,若CF=2,tanABD=,則DF長為( 。

A.B.C.5D.7

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形紙片ABCD,AB=4,BC=3,點PBC邊上,將CDP沿DP折疊,點C落在點E處,PE、DE分別交AB于點O、F,且OP=OF,則cosADF的值為( 。

A. B. C. D.

查看答案和解析>>

同步練習冊答案