【題目】某超市計劃購進一批甲、乙兩種玩具,已知4件甲種玩具的進價與2件乙種玩具的進價的和為230元,2件甲種玩具的進價與3件乙種玩具的進價的和為185元.
(1)求每件甲種、乙種玩具的進價分別是多少元;
(2)如果購進甲種玩具有優(yōu)惠,優(yōu)惠方法是:購進甲種玩具超過20件,超出部分可以享受7折優(yōu)惠,若購進()件甲種玩具需要花費元,請你直接寫出與的函數(shù)表達式.
【答案】(1)每件甲種玩具的進價是40元,每件乙種玩具的進價是35元;(2)當時,;當時,
【解析】
(1)先找出等量關系:4件甲種玩具的進價與2件乙種玩具的進價的和為230元,2件甲種玩具的進價與3件乙種玩具的進價的和為185元,再列出方程組求解即得.
(2)先將的取值范圍分兩段:和,再根據(jù)“總費用=數(shù)量進價”列出對應范圍的函數(shù)關系式.
解:(1)設每件甲種玩具的進價是元,每件乙種玩具的進價是元.
由題意得
解得:
答:每件甲種玩具的進價是40元,每件乙種玩具的進價是35元.
(2)∵每件甲種玩具的進價是40元
∴當時,;
∵購進甲種玩具超過20件,超出部分可以享受7折優(yōu)惠
∴當時,即
綜上所述:當時,;當時,
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示是二次函數(shù)y=ax2+bx+c(a≠0)圖象的一部分,直線x=﹣1是對稱軸,有下列判斷:①b﹣2a=0,②4a﹣2b+c<0,③a﹣b+c=﹣9a,④若(﹣3,y1),(,y2)是拋物線上的兩點,則y1<y2.其中正確的是( 。
A. ①②③B. ①③C. ①④D. ①③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系xOy中,拋物線C:y=ax2+bx+c與x軸相交于A,B兩點,頂點為D(0,4),AB=4,設點F(m,0)是x軸的正半軸上一點,將拋物線C繞點F旋轉(zhuǎn)180°,得到新的拋物線C/.
(1)求拋物線C的函數(shù)表達式;
(2)若拋物線C/與拋物線C在y軸的右側(cè)有兩個不同的公共點,求m的取值范圍.
(3)如圖2,P是第一象限內(nèi)拋物線C上一點,它到兩坐標軸的距離相等,點P在拋物線C/上的對應點P/,設M是C上的動點,N是C/上的動點,試探究四邊形PMP/N能否成為正方形?若能,請直接寫出m的值;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于A(﹣1,0)、B(3,0)兩點,與y軸交于點C,頂點為D,下列結(jié)論正確的是( 。
A. abc<0
B. 3a+c=0
C. 4a﹣2b+c<0
D. 方程ax2+bx+c=﹣2(a≠0)有兩個不相等的實數(shù)根
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,△ABC為等邊三角形,點D為直線BC上一動點(點D不與B、C重合).以AD為邊作菱形ADEF,使∠DAF=60°,連接CF.
(1)如圖1,當點D在邊BC上時,
①求證:∠ADB=∠AFC;②請直接判斷結(jié)論∠AFC=∠ACB+∠DAC是否成立;
(2)如圖2,當點D在邊BC的延長線上時,其他條件不變,結(jié)論∠AFC=∠ACB+∠DAC是否成立?請寫出∠AFC、∠ACB、∠DAC之間存在的數(shù)量關系,并寫出證明過程;
(3)如圖3,當點D在邊CB的延長線上時,且點A、F分別在直線BC的異側(cè),其他條件不變,請補全圖形,并直接寫出∠AFC、∠ACB、∠DAC之間存在的等量關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在⊙O中,AB是⊙O的直徑,點D是⊙O上一點,點C是弧AD的中點,弦CE⊥AB于點F,過點D的切線交EC的延長線于點G,連接AD,分別交CF、BC于點P、Q,連接AC.給出下列結(jié)論:①∠BAD=∠ABC;②GP=GD;③點P是△ACQ的外心;④APAD=CQCB.其中正確的是( 。
A. ①②③ B. ②③④ C. ①③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,DE是邊AB的垂直平分線,交AB于E、交AC于D,連接BD.
(1)若AB=AC,且△BCD的周長為18cm,△ABC的周長為30cm,求BE的長;
(2)若∠CBD=30°,試求△ABC三個角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB⊥BD,CD⊥BD點P是BD上一點.
(1)若∠APC=90°.求證:△PAB∽△CPD;
(2)若△PAB與△PCD相似,AB=9,BP=6,CD=4.求PD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交AC邊于點D,過點C作CF∥AB,與過點B的切線交于點F,連接BD.
(1)求證:BD=BF;
(2)若AB=10,CD=4,求BC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com