【題目】如圖,在△ABC中,DE是邊AB的垂直平分線,交ABE、交ACD,連接BD

1)若ABAC,且△BCD的周長(zhǎng)為18cm,△ABC的周長(zhǎng)為30cm,求BE的長(zhǎng);

2)若∠CBD30°,試求△ABC三個(gè)角的度數(shù).

【答案】1BE6cm;(2)∠A40°,∠ABC70°,∠C70°.

【解析】

1)根據(jù)線段垂直平分線的性質(zhì)得到AD=DBAE=BE,根據(jù)三角形的周長(zhǎng)公式求出AB,即可得出結(jié)論;

2)根據(jù)等腰三角形的性質(zhì)得到∠A=ABD,根據(jù)等腰三角形的性質(zhì)、三角形內(nèi)角和定理計(jì)算即可.

1)∵DE是邊AB的垂直平分線,

AD=DB,AE=BE

∵△BCD的周長(zhǎng)為18cm,

AC+BC=AD+DC+BC=DB+DC+BC=AC+BC=18(cm)

∵△ABC的周長(zhǎng)為30cm,

AB=30(AC+BC)=3018=12(cm),

BE=12÷2=6(cm);

2)設(shè)∠A

DA=DB

∴∠A=ABD

AB=AC,

∴∠C=ABC=α+30°,

由三角形的內(nèi)角和定理得:α+2(α+30°)=180°,

解得:α=40°,

∴∠A=40°,∠ABC=70°,∠C=70°.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們知道,三角形的內(nèi)心是三條角平分線的交點(diǎn),過三角形內(nèi)心的一條直線與兩邊相交,兩交點(diǎn)之間的線段把這個(gè)三角形分成兩個(gè)圖形.若有一個(gè)圖形與原三角形相似,則把這條線段叫做這個(gè)三角形的“內(nèi)似線”.

(1)等邊三角形“內(nèi)似線”的條數(shù)為   ;

(2)如圖,ABC中,AB=AC,點(diǎn)D在AC上,且BD=BC=AD,求證:BD是ABC的“內(nèi)似線”;

(3)在RtABC中,C=90°,AC=4,BC=3,E、F分別在邊AC、BC上,且EF是ABC的“內(nèi)似線”,求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列條件中,不能判斷△ABC是直角三角形的是(  )

A. abc345 B. A:∠B:∠C345

C. A+B=∠C D. abc12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市計(jì)劃購(gòu)進(jìn)一批甲、乙兩種玩具,已知4件甲種玩具的進(jìn)價(jià)與2件乙種玩具的進(jìn)價(jià)的和為230元,2件甲種玩具的進(jìn)價(jià)與3件乙種玩具的進(jìn)價(jià)的和為185元.

1)求每件甲種、乙種玩具的進(jìn)價(jià)分別是多少元;

2)如果購(gòu)進(jìn)甲種玩具有優(yōu)惠,優(yōu)惠方法是:購(gòu)進(jìn)甲種玩具超過20件,超出部分可以享受7折優(yōu)惠,若購(gòu)進(jìn))件甲種玩具需要花費(fèi)元,請(qǐng)你直接寫出的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】等腰三角形一腰上的高與另一腰的夾角為50°,則該三角形的底角為____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面直角坐標(biāo)系XOY中,若A(0,a)、B(b,0)且(a﹣4)2+=0,以AB為直角邊作等腰RtABC,CAB=90°,AB=AC.

(1)求C點(diǎn)坐標(biāo);

(2)如圖過C點(diǎn)作CDX軸于D,連接AD,求ADC的度數(shù);

(3)如圖在(1)中,點(diǎn)A在Y軸上運(yùn)動(dòng),以O(shè)A為直角邊作等腰RtOAE,連接EC,交Y軸于F,試問A點(diǎn)在運(yùn)動(dòng)過程中SAOB:SAEF的值是否會(huì)發(fā)生變化?如果沒有變化,請(qǐng)直接寫出它們的比值   (不需要解答過程或說明理由).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)B在線段AC上,點(diǎn)E在線段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M,N分別是AE,CD的中點(diǎn)。試探索BM和BN的關(guān)系,并證明你的結(jié)論。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)分別交y軸、x軸于A、B兩點(diǎn),拋物線y=﹣x2+bx+c過A、B兩點(diǎn).

(1)求這個(gè)拋物線的解析式;

(2)作垂直x軸的直線x=t,在第一象限交直線AB于M,交這個(gè)拋物線于N.求當(dāng)t取何值時(shí),MN有最大值?最大值是多少?

(3)在(2)的情況下,以A、M、N、D為頂點(diǎn)作平行四邊形,求第四個(gè)頂點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一種實(shí)驗(yàn)用軌道彈珠,在軌道上行駛5分鐘后離開軌道,前2分鐘其速度v(米/分)與時(shí)間t(分)滿足二次函數(shù)v=at2,后三分鐘其速度v(米/分)與時(shí)間t(分)滿足反比例函數(shù)關(guān)系,如圖,軌道旁邊的測(cè)速儀測(cè)得彈珠1分鐘末的速度為2米/分,求:

(1)二次函數(shù)和反比例函數(shù)的關(guān)系式.

(2)彈珠在軌道上行駛的最大速度.

【答案】(1)v=(2<t≤5) (2)8米/分

【解析】分析:(1)由圖象可知前一分鐘過點(diǎn)(1,2),后三分鐘時(shí)過點(diǎn)(2,8),分別利用待定系數(shù)法可求得函數(shù)解析式;

(2)把t=2代入(1)中二次函數(shù)解析式即可.

詳解:(1)v=at2的圖象經(jīng)過點(diǎn)(1,2),

a=2.

∴二次函數(shù)的解析式為:v=2t2,(0≤t≤2);

設(shè)反比例函數(shù)的解析式為v=,

由題意知,圖象經(jīng)過點(diǎn)(2,8),

k=16,

∴反比例函數(shù)的解析式為v=(2<t≤5);

(2)∵二次函數(shù)v=2t2,(0≤t≤2)的圖象開口向上,對(duì)稱軸為y軸,

∴彈珠在軌道上行駛的最大速度在2秒末,為8/分.

點(diǎn)睛:本題考查了反比例函數(shù)和二次函數(shù)的應(yīng)用.解題的關(guān)鍵是從圖中得到關(guān)鍵性的信息:自變量的取值范圍和圖象所經(jīng)過的點(diǎn)的坐標(biāo).

型】解答
結(jié)束】
24

【題目】閱讀材料:小胖同學(xué)發(fā)現(xiàn)這樣一個(gè)規(guī)律:兩個(gè)頂角相等的等腰三角形,如果具有公共的頂角的頂點(diǎn),并把它們的底角頂點(diǎn)連接起來(lái)則形成一組旋轉(zhuǎn)全等的三角形.小胖把具有這個(gè)規(guī)律的圖形稱為“手拉手”圖形.如圖1,在“手拉手”圖形中,小胖發(fā)現(xiàn)若∠BAC=∠DAE,AB=AC,AD=AE,則BD=CE.

(1)在圖1中證明小胖的發(fā)現(xiàn);

借助小胖同學(xué)總結(jié)規(guī)律,構(gòu)造“手拉手”圖形來(lái)解答下面的問題:

(2)如圖2,AB=BC,∠ABC=∠BDC=60°,求證:AD+CD=BD;

(3)如圖3,在ABC中,AB=AC,BAC=m°,點(diǎn)E為ABC外一點(diǎn),點(diǎn)D為BC中點(diǎn),∠EBC=∠ACF,ED⊥FD,求EAF的度數(shù)(用含有m的式子表示).

查看答案和解析>>

同步練習(xí)冊(cè)答案