【題目】如圖,D是△ABC外接圓上的動點,且B,D位于AC的兩側(cè),DEAB,垂足為E,DE的延長線交此圓于點F.BGAD,垂足為G,BGDE于點H,DC,F(xiàn)B的延長線交于點P,且PC=PB.

(1)求證:BGCD;

(2)設(shè)△ABC外接圓的圓心為O,若AB=DH,OHD=80°,求∠BDE的大小.

【答案】(1)證明見解析;(2)20°或40°.

【解析】

(1)根據(jù)等邊對等角得:∠PCB=∠PBC,由四點共圓的性質(zhì)得:∠BAD+∠BCD=180°,從而得:∠BFD=∠PCB=∠PBC,根據(jù)平行線的判定得:BC∥DF,可得∠ABC=90°,AC是⊙O的直徑,從而得:∠ADC=∠AGB=90°,根據(jù)同位角相等可得結(jié)論;

(2)先證明四邊形BCDH是平行四邊形,得BC=DH,根據(jù)特殊的三角函數(shù)值得:∠ACB=60°,∠BAC=30°,所以DH=AC,分兩種情況:

①當(dāng)點ODE的左側(cè)時,如圖2,作輔助線,構(gòu)建直角三角形,由同弧所對的圓周角相等和互余的性質(zhì)得:∠AMD=∠ABD,則∠ADM=∠BDE,并由DH=OD,可得結(jié)論;

②當(dāng)點ODE的右側(cè)時,如圖3,同理作輔助線,同理有∠ADE=∠BDN=20°,∠ODH=20°,得結(jié)論.

(1)證明:如圖1,

PC=PB,

∴∠PCB=PBC,

∵四邊形ABCD內(nèi)接于圓,

∴∠BAD+BCD=180°,

∵∠BCD+PCB=180°,

∴∠BAD=PCB,

∵∠BAD=BFD,

∴∠BFD=PCB=PBC,

BCDF,

DEAB,

∴∠DEB=90°,

∴∠ABC=90°,

AC是⊙O的直徑,

∴∠ADC=90°,

BGAD,

∴∠AGB=90°,

∴∠ADC=AGB,

BGCD;

(2)由(1)得:BCDF,BGCD,

∴四邊形BCDH是平行四邊形,

BC=DH,

RtABC中,∵AB=DH,

tanACB=,

∴∠ACB=60°,BAC=30°,

∴∠ADB=60°BC=AC,

DH=AC,

①當(dāng)點ODE的左側(cè)時,如圖2,作直徑DM,連接AM、OH,則∠DAM=90°,

∴∠AMD+ADM=90°

DEAB,

∴∠BED=90°,

∴∠BDE+ABD=90°,

∵∠AMD=ABD,

∴∠ADM=BDE,

DH=AC,

DH=OD,

∴∠DOH=OHD=80°,

∴∠ODH=20°

∵∠AOB=60°,

∴∠ADM+BDE=40°,

∴∠BDE=ADM=20°,

②當(dāng)點ODE的右側(cè)時,如圖3,作直徑DN,連接BN,

由①得:∠ADE=BDN=20°,ODH=20°,

∴∠BDE=BDN+ODH=40°,

綜上所述,∠BDE的度數(shù)為20°40°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AD=2,AB=3,過點A,C作相距為2的平行線段AE,CF,分別交CD,AB于點E,F(xiàn),則DE的長是( 。

A. B. C. 1 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個頂點的位置如圖所示.

1)若△ABC內(nèi)有一點Pab)隨著△ABC平移后到了點P′(a+4,b1),直接寫出A點平移后對應(yīng)點A′的坐標(biāo).

2)直接作出△ABC關(guān)于y軸對稱的△ABC′(其中A′、B′、C′分別是A、BC的對應(yīng)點)

3)求四邊形ABCC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在中,.動點的頂點出發(fā),以的速度沿勻速運動回到點.圖2是點運動過程中,線段的長度隨時間變化的圖象.其中點為曲線部分的最低點.

請從下面A、B兩題中任選一作答,我選擇________.

A的面積是______,B.圖2的值是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,平面直角坐標(biāo)系中,直線軸、軸分別交于點,,直線經(jīng)過點,并與軸交于點

1)求兩點的坐標(biāo)及的值;

2)如圖2,動點從原點出發(fā),以每秒個單位長度的速度沿軸正方向運動.過點軸的垂線,分別交直線,于點.設(shè)點運動的時間為

①點的坐標(biāo)為______.點的坐標(biāo)為_______;(均用含的式子表示)

②請從下面A、B兩題中任選一題作答我選擇________題.

A.當(dāng)點在線段上時,探究是否存在某一時刻,使?若存在,求出此時的面積;若不存在說明理由.

B.點是線段上一點.當(dāng)點在射線上時,探究是否存在某一時刻使?若存在、求出此時的值,并直接寫出此時為等腰三角形時點的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把正方形鐵片OABC置于平面直角坐標(biāo)系中,頂點A的坐標(biāo)為(3,0),點P(1,2)在正方形鐵片上,將正方形鐵片繞其右下角的頂點按順時針方向依次旋轉(zhuǎn)90°,第一次旋轉(zhuǎn)至圖①位置,第二次旋轉(zhuǎn)至圖②位置,則正方形鐵片連續(xù)旋轉(zhuǎn)2017次后,點P的坐標(biāo)為____________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,上,且,過點作射線ANBCAC同側(cè)),若動點從點出發(fā),沿射線勻速運動,運動速度為/,設(shè)點運動時間為秒.

1)經(jīng)過_______秒時,是等腰直角三角形?

2)當(dāng)于點時,求此時的值;

3)過點于點,已知,請問是否存在點,使是以為腰的等腰三角形?對存在的情況,請求出t的值,對不存在的情況,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,為了躲避臺風(fēng),一輪船一直由西向東航行,上午點,在處測得小島的方向是北偏東,以每小時海里的速度繼續(xù)向東航行,中午點到達(dá)處,并測得小島的方向是北偏東,若小島周圍海里內(nèi)有暗礁,問該輪船是否能一直向東航行?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a、b、c都是常數(shù),且a≠0)的圖象與x軸交于點(﹣2,0)、(x1,0),且1<x1<2,與y軸的正半軸的交點在(0,2)的下方,下列結(jié)論:①4a﹣2b+c=0;②a<b<0;③2a+c>0;④2a﹣b+1>0.其中正確結(jié)論的個數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習(xí)冊答案