【題目】已知:如圖,為了躲避臺(tái)風(fēng),一輪船一直由西向東航行,上午點(diǎn),在處測(cè)得小島的方向是北偏東,以每小時(shí)海里的速度繼續(xù)向東航行,中午點(diǎn)到達(dá)處,并測(cè)得小島的方向是北偏東,若小島周圍海里內(nèi)有暗礁,問該輪船是否能一直向東航行?

【答案】繼續(xù)向東航行則有觸礁的危險(xiǎn),不能一直向東航行.

【解析】

先作出輔助線構(gòu)造出直角三角形,求出BP進(jìn)而得出PD,最后和25進(jìn)行判斷即可

PPDAB于點(diǎn)D

∵∠PBD=90°﹣60°=30°,且∠PBD=PAB+∠APBPAB=9075=15°,∴∠PAB=APB,BP=AB=15×2=30(海里)

在直角△BPD中,∵∠PBD=PAB+∠APB=30°,PD=BP=15海里<25海里,故若繼續(xù)向東航行則有觸礁的危險(xiǎn),不能一直向東航行

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰△ABC中,AB=AC=4cm,B=30°,點(diǎn)P從點(diǎn)B出發(fā),以cm/s的速度沿BC方向運(yùn)動(dòng)到點(diǎn)C停止,同時(shí)點(diǎn)Q從點(diǎn)B出發(fā),以1cm/s的速度沿BA﹣AC方向運(yùn)動(dòng)到點(diǎn)C停止,若△BPQ的面積為y(cm2),運(yùn)動(dòng)時(shí)間為x(s),則下列最能反映yx之間函數(shù)關(guān)系的圖象是( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,D是△ABC外接圓上的動(dòng)點(diǎn),且B,D位于AC的兩側(cè),DEAB,垂足為E,DE的延長線交此圓于點(diǎn)F.BGAD,垂足為G,BGDE于點(diǎn)H,DC,F(xiàn)B的延長線交于點(diǎn)P,且PC=PB.

(1)求證:BGCD;

(2)設(shè)△ABC外接圓的圓心為O,若AB=DH,OHD=80°,求∠BDE的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小島在港口P的北偏西60°方向,距港口56海里的A處,貨船從港口P出發(fā),沿北偏東45°方向勻速駛離港口P,4小時(shí)后貨船在小島的正東方向.求貨船的航行速度.(精確到0.1海里/時(shí),參考數(shù)據(jù):≈1.41,≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,無人機(jī)在空中C處測(cè)得地面A、B兩點(diǎn)的俯角分別為60°、45°,如果無人機(jī)距地面高度CD米,點(diǎn)A、D、E在同一水平直線上,則A、B兩點(diǎn)間的距離是_____米.(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠APB=30°,OP=3cm,⊙O的半徑為1cm,若圓心O沿著BP的方向在直線BP上移動(dòng).(1)當(dāng)圓心O移動(dòng)的距離為1cm時(shí),則⊙O與直線PA的位置關(guān)系是_____.(2)若圓心O的移動(dòng)距離是d,當(dāng)⊙O與直線PA相交時(shí),則d的取值范圍是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:AB是⊙O的直徑,點(diǎn)C在⊙O上,CD是⊙O的切線,ADCD于點(diǎn)D.EAB延長線上一點(diǎn),CE交⊙O于點(diǎn)F,連結(jié)OC,AC.

(1)求證AC平分∠DAO;

(2)若∠DAO=105°,E=30°.①求∠OCE的度數(shù).②若⊙O的半徑為,求線段EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC,AB=BC,ABC=90°,BMAC邊上的中線,點(diǎn)D,E分別在邊ACBC,DB=DE,DEBM相交于點(diǎn)N,EFAC于點(diǎn)F,以下結(jié)論:

①∠DBM=CDE;SBDE<S四邊形BMFE;CD·EN=BN·BD;AC=2DF.

其中正確結(jié)論的個(gè)數(shù)是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,分別以RtABC的直角邊AC及斜邊AB向外作等邊ACD,等邊ABE已知BAC=30°,EFAB,垂足為F,連接DF

(1)試說明AC=EF;

(2)求證:四邊形ADFE是平行四邊形

查看答案和解析>>

同步練習(xí)冊(cè)答案