【題目】如圖,在中,,,,在上,且,過點作射線(AN與BC在AC同側),若動點從點出發(fā),沿射線勻速運動,運動速度為/,設點運動時間為秒.
(1)經(jīng)過_______秒時,是等腰直角三角形?
(2)當于點時,求此時的值;
(3)過點作于點,已知,請問是否存在點,使是以為腰的等腰三角形?對存在的情況,請求出t的值,對不存在的情況,請說明理由.
【答案】(1)6;(2)8;(3)2
【解析】
(1)得出兩腰AM=AP時,即可得出答案;
(2)根據(jù)垂直的定義和同角的余角相等得到∠CBA=∠AMP,證明△ACB≌△PAM,得出比例式,代入求出AP,即可得出答案;
(3)由勾股定理求出BM的值,可知BD>BM,則不存在點P使的等腰三角形,又由AM<BM,則存在點P使的等腰三角形,可證△MCB≌△PAM得PA的長,即可求出t的值.
解:(1)∵∠PAM=90°,當是等腰直角三角形時,
則有PA=AM=6cm,
∴t=6÷1=6(s)
故答案為:6;
(2)∵,
∴∠AQM=90°,∠PAM=90°,
∴∠AMP+∠BAC=90°,
又∵∠C=90°,
∴∠CBA+∠BAC=90°,
∴∠AMP=∠CBA,
在△ACB和△PAM中,
,
∴△ACB≌△PAM(ASA),
∴PA=AC,
∵,
∴,
∴t=8÷1=8(s),此時的值為8;
(3)∵,,, ,
∴,
由勾股定理得:,
∵,,
∴BD>BM,則不存在點P使的等腰三角形,
又∵AM<BM,則存在點P使的等腰三角形,
在Rt△MCB和Rt△PAM中,
,
∴△MCB≌△PAM(HL),
∴PA=CM=2cm,
∴t=2÷1=2(s),此時的值為2.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=8,BC=6,點D是AB的中點,點E在邊AC上,將△ADE沿DE翻折,使點A落在點A′處,當A′E⊥AC時,A′B=_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,D是△ABC外接圓上的動點,且B,D位于AC的兩側,DE⊥AB,垂足為E,DE的延長線交此圓于點F.BG⊥AD,垂足為G,BG交DE于點H,DC,F(xiàn)B的延長線交于點P,且PC=PB.
(1)求證:BG∥CD;
(2)設△ABC外接圓的圓心為O,若AB=DH,∠OHD=80°,求∠BDE的大。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】風電已成為我國繼煤電、水電之后的第三大電源,風電機組主要由塔桿和葉片組成(如圖1),圖2是從圖1引出的平面圖.假設你站在A處測得塔桿頂端C的仰角是55°,沿HA方向水平前進43米到達山底G處,在山頂B處發(fā)現(xiàn)正好一葉片到達最高位置,此時測得葉片的頂端D(D、C、H在同一直線上)的仰角是45°.已知葉片的長度為35米(塔桿與葉片連接處的長度忽略不計),山高BG為10米,BG⊥HG,CH⊥AH,求塔桿CH的高.(參考數(shù)據(jù):tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小島在港口P的北偏西60°方向,距港口56海里的A處,貨船從港口P出發(fā),沿北偏東45°方向勻速駛離港口P,4小時后貨船在小島的正東方向.求貨船的航行速度.(精確到0.1海里/時,參考數(shù)據(jù):≈1.41,≈1.73)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,無人機在空中C處測得地面A、B兩點的俯角分別為60°、45°,如果無人機距地面高度CD為米,點A、D、E在同一水平直線上,則A、B兩點間的距離是_____米.(結果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知:AB是⊙O的直徑,點C在⊙O上,CD是⊙O的切線,AD⊥CD于點D.E是AB延長線上一點,CE交⊙O于點F,連結OC,AC.
(1)求證:AC平分∠DAO;
(2)若∠DAO=105°,∠E=30°.①求∠OCE的度數(shù).②若⊙O的半徑為,求線段EF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AOOM,OA=8,點B為射線OM上的一個動點,分別以OB、AB為直角邊,B為直角頂點,在OM兩側作等腰Rt△OBF、等腰Rt△ABE,連接EF交OM于P點,當點B在射線OM上移動時,PB的長度是 ( )
A. 3.6 B. 4 C. 4.8 D. PB的長度隨B點的運動而變化
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com