【題目】速滑運(yùn)動(dòng)受到許多年輕人的喜愛。如圖,四邊形是某速滑場館建造的滑臺(tái),已知,滑臺(tái)的高米,且坡面的坡度為.后來為了提高安全性,決定降低坡度,改造后的新坡面AC的坡度為.

1)求新坡面的坡角及的長;

2)原坡面底部的正前方米處是護(hù)墻,為保證安全,體育管理部門規(guī)定,坡面底部至少距護(hù)墻米。請問新的設(shè)計(jì)方案能否通過,試說明理由(參考數(shù)據(jù):

【答案】(1)新坡面的坡角為米;(2)新的設(shè)計(jì)方案不能通過,理由詳見解析.

【解析】

1)過點(diǎn)CCHBG,根據(jù)坡度的概念、正確的定義求出新坡面AC的坡角;(2)根據(jù)坡度的定義分別求出AH、BH,求出EA,根據(jù)題意進(jìn)行比較,得到答案.

解:如圖,過點(diǎn)垂足為

1新坡面的坡度為 ,

即新坡面的坡角為

米;

2)新的設(shè)計(jì)方案不能通過.

理由如下:

坡面的坡度為,

,

新的設(shè)計(jì)方案不能通過.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,∠BAC,∠ACB的平分線相交于點(diǎn)E,過點(diǎn)E作EF∥BC交AC于點(diǎn)F,則EF的長為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BD是△ABC的角平分線,過點(diǎn)D作DE∥BC交AB于點(diǎn)E,DF∥AB交BC于點(diǎn)F.

(1)求證:四邊形BEDF為菱形;

(2)如果∠A=90°,∠C=30°,BD=12,求菱形BEDF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知B港口位于A觀測點(diǎn)北偏東45°方向,且其到A觀測點(diǎn)正北風(fēng)向的距離BM的長為10km,一艘貨輪從B港口沿如圖所示的BC方向航行4km到達(dá)C處,測得C處位于A觀測點(diǎn)北偏東75°方向,則此時(shí)貨輪與A觀測點(diǎn)之間的距離AC的長為( )km.

A.8 B.9 C.6 D.7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在小明的一次投籃中,球出手時(shí)離地面高2米,與籃圈中心的水平距離為7米,當(dāng)球出手后水平距離為4米時(shí)到達(dá)最大高度4米.籃球運(yùn)行的軌跡為拋物線,籃球中心距離地面3米,通過計(jì)算說明此球能否投中.

探究一:若出手的角度、力度和高度都不變的情況下,求小明朝著籃球架再向前平移多少米后跳起投籃也能將籃球投入籃筐中?

探究二:若出手的角度、力度和高度都發(fā)生改變的情況下,但是拋物線的頂點(diǎn)等其他條件不變,求小明出手的高度需要增加多少米才能將籃球投入籃筐中?

探究三:若出手的角度、力度都改變,出手高度不變,籃筐的坐標(biāo)為(6,3.44),球場上方有一組高6米的電線,要想在籃球不觸碰電線的情況下,將籃球投入籃筐中,直接寫出二次函數(shù)解析式中a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一個(gè)邊長為4的正方形分割成如圖所示的9部分,其中,全等,,,也全等,中間小正方形的面積與面積相等,且是以為底的等腰三角形,則的面積為(

A.2B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是銳角的外接圓,的切線,切點(diǎn)為,連結(jié)的平分線,連結(jié).下列結(jié)論:①平分;②連接,點(diǎn)的外心;③;④若點(diǎn)分別是上的動(dòng)點(diǎn),則的最小值是.其中一定正確的是__________(把你認(rèn)為正確結(jié)論的序號(hào)都填上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知的函數(shù),如表是的幾組對應(yīng)值.

5

4

3

2

0

1

2

3

4

5

1.969

1.938

1.875

1.75

1

0

2

1.5

0

2.5

小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),利用上述表格所反映出的之間的變化規(guī)律,對該函數(shù)的圖象與性質(zhì)進(jìn)行了探究.

下面是小明的探究過程,請補(bǔ)充完整:

1)如圖,在平面直角坐標(biāo)系中,描出了以上表中各對對應(yīng)值為坐標(biāo)的點(diǎn).根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象;

2)根據(jù)畫出的函數(shù)圖象,寫出:

對應(yīng)的函數(shù)值約為   ;

該函數(shù)的一條性質(zhì):   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】施工隊(duì)要修建一個(gè)橫斷面為拋物線的公路隧道,其高度為6米,寬度OM12米.現(xiàn)以O點(diǎn)為原點(diǎn),OM所在直線為x軸建立直角坐標(biāo)系(如圖1所示).

1)求出這條拋物線的函數(shù)解析式,并寫出自變量x的取值范圍;

2)隧道下的公路是雙向行車道(正中間是一條寬1米的隔離帶),其中的一條行車道能否行駛寬2.5米、高5米的特種車輛?請通過計(jì)算說明;

3)施工隊(duì)計(jì)劃在隧道門口搭建一個(gè)矩形腳手架”CDAB,使A、D點(diǎn)在拋物線上。B、C點(diǎn)在地面OM線上(如圖2所示).為了籌備材料,需測算腳手架三根鋼桿AB、ADDC的長度之和的最大值是多少,請你幫施工隊(duì)計(jì)算一下.

查看答案和解析>>

同步練習(xí)冊答案