【題目】數(shù)軸上兩點A、B所表示的數(shù)分別為a和b,且滿足。點E以每秒1個單位的速度從原點O出發(fā)向右運動,同時點M從點A出發(fā)以每秒7個單位的速度向左運動,點N從點B出發(fā),以每秒10個單位的速度向右運動,P、Q分別為ME、QN的中點。思考,在運動過程中,的值________________
【答案】2
【解析】
設運動時間為t,則點E對應的數(shù)是t,點M對應的數(shù)是-2-7t,點N對應的數(shù)是8+10t.根據(jù)題意求得P點對應的數(shù)是=13t,Q點對應的數(shù)是 =4+5t,然后表示出MN、PQ即可求解.
解:,
,
,
設運動時間為t,則點E對應的數(shù)是t,點M對應的數(shù)是-2-7t,點N對應的數(shù)是8+10t.
∵P是ME的中點,
∴P點對應的數(shù)是=13t,
又∵Q是ON的中點,
∴Q點對應的數(shù)是 =4+5t,
∴MN=(8+10t)-(-2-7t)=10+17t,OE=,=(4+5t)-(-1-3t)=5+8t,
∴,
故答案為:2.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠B=∠C=36°,AB的垂直平分線交BC于點D,交AB于點H,AC的垂直平分線交BC于點E,交AC于點G,連接AD,AE,則下列結(jié)論錯誤的是( )
A. B. AD,AE將∠BAC三等分
C. △ABE≌△ACD D. S△ADH=S△CEG
【答案】A
【解析】試題解析:∵∠B=∠C=36°,∴AB=AC,∠BAC=108°,∵DH垂直平分AB,EG垂直平分AC,∴DB=DA,EA=EC,∴∠B=∠DAB=∠C=∠CAE=36°,∴△BDA∽△BAC,∴,又∵∠ADC=∠B+∠BAD=72°,∠DAC=∠BAC﹣∠BAD=72°,∴∠ADC=∠DAC,∴CD=CA=BA,∴BD=BC﹣CD=BC﹣AB,則=,即=,故A錯誤;
∵∠BAC=108°,∠B=∠DAB=∠C=∠CAE=36°,∴∠DAE=∠BAC﹣∠DAB﹣∠CAE=36°,即∠DAB=∠DAE=∠CAE=36°,∴AD,AE將∠BAC三等分,故B正確;
∵∠BAE=∠BAD+∠DAE=72°,∠CAD=∠CAE+∠DAE=72°,∴∠BAE=∠CAD,在△BAE和△CAD中,∵∠B=∠C,AB=AC,∠BAE=∠CAD,∴△BAE≌△CAD,故C正確;
由△BAE≌△CAD可得S△BAE=S△CAD,即S△BAD+S△ADE=S△CAE+S△ADE,∴S△BAD=S△CAE,又∵DH垂直平分AB,EG垂直平分AC,∴S△ADH=S△ABD,S△CEG=S△CAE,∴S△ADH=S△CEG,故D正確.
故選A.
【題型】單選題
【結(jié)束】
11
【題目】紅細胞是人體中血液運輸氧氣的主要媒介,人體中紅細胞的直徑約為0.0000077m,將0.0000077用科學記數(shù)法表示為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學圖書室計劃購買了甲、乙兩種故事書.若購買7本甲種故事書和4本乙種故事書需510元;購買3本甲種故事書和5本乙種故事書需350元.
(1)求甲種故事書和乙種故事書的單價;
(2)學校準備購買甲、乙兩種故事書共200本,且甲種故事書的數(shù)量不少于乙種故事書的數(shù)量的,請設計出最省錢的購買方案,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,二次函數(shù)y=ax2+bx+c的圖象開口向上,圖象經(jīng)過點(﹣1,2)和(1,0),且與y軸交于負半軸,給出六個結(jié)論:①a>0;②b>0;③c>0;④a+b+c=0;⑤b2﹣4ac>0;⑥2a﹣b>0,其中正確結(jié)論序號是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在下列生活、生產(chǎn)現(xiàn)象中,可以用基本事實“兩點確定一條直線”來解釋的是( 。
①用兩顆釘子就可以把木條固定在墻上;②把筆尖看成一個點,當這個點運動時便得到一條線;③把彎曲的公路改直,就能縮短路程;④植樹時,只要栽下兩棵樹,就可以把同一行樹栽在同一條直線上.
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=5,CB=8,分別以AB、AC為直徑作半圓,則圖中陰影部分面積是( )
A. -24 B. 25π﹣24 C. 25π﹣12 D. -12
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在銳角三角形ABC中,點D、E分別在邊AC、AB上,AG⊥BC于點G,AF⊥DE于點F,∠EAF=∠GAC.
(1)求證:△ADE∽△ABC;
(2)若AD=BE=4,AE=3,求CD的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖1,在面積為3的正方形ABCD中,E、F分別是BC和CD邊上的兩點,AE⊥BF于點G,且BE=1.
(1)求證:△ABE≌△BCF;
(2)求出△ABE和△BCF重疊部分(即△BEG)的面積;
(3)現(xiàn)將△ABE繞點A逆時針方向旋轉(zhuǎn)到△AB′E′(如圖2),使點E落在CD邊上的點E′處,問△ABE在旋轉(zhuǎn)前后與△BCF重疊部分的面積是否發(fā)生了變化?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某人去南方批發(fā)茶葉,在某地A批發(fā)市場以每包m元的價格進了40包茶葉,又到B批發(fā)市場時發(fā)現(xiàn)同樣的茶葉比A批發(fā)市場要便宜,每包的價格僅為n元,因此他又在B批發(fā)市場進了60包同樣的茶葉.如果他銷售時以每包元的價格全部賣出這批茶葉,那么在不考慮其它因素的情況下他的這次買賣( 。
A.一定盈利B.一定虧損
C.不盈不虧D.盈虧不能確定
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com