【題目】如圖,在銳角三角形ABC中,點D、E分別在邊AC、AB上,AG⊥BC于點G,AF⊥DE于點F,∠EAF=∠GAC.
(1)求證:△ADE∽△ABC;
(2)若AD=BE=4,AE=3,求CD的值.
【答案】(1)詳見解析;(2)
【解析】
(1)由∠EAF=∠GAC.可得∠EAG=∠DAF且AG⊥BC,AM⊥DE 可得∠ADF=∠B,且∠EAD=∠BAC可證:△ADE∽△ABC;
(2)利用相似的性質(zhì)得出,AB=BE+AE=4+3=7,即可解答
(1)證明:AG⊥BC,AF⊥DE,
∴∠AFE=∠AGC=90°,
∴∠AEF+∠EAF=90°,∠GAC+∠ACG=90°,
∵∠EAF=∠GAC,
∴∠AEF=∠ACG,
∵∠EAD=∠CAB,
∴△ADE∽△ABC;
(2)解:∵△ADE∽△ABC,
∴,
∵AD=BE=4,AE=3,
∴AB=BE+AE=4+3=7,
∴,
解得:AC= ,
∴CD=AC﹣AD=﹣4= .
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC是等邊三角形,點D、E分別在邊BC、AC上,且CD=CE,連接DE并延長至點F,使EF=AE,連接AF,CF,連接BE并延長交CF于點G.下列結(jié)論:
①△ABE≌△ACF;②BC=DF;③S△ABC=S△ACF+S△DCF;④若BD=2DC,則GF=2EG.其中正確的結(jié)論是 .(填寫所有正確結(jié)論的序號)
【答案】①②③④.
【解析】
試題分析:①由△ABC是等邊三角形,可得AB=AC=BC,∠BAC=∠ACB=60°,再因DE=DC,可判定△DEC是等邊三角形,所以ED=EC=DC,∠DEC=∠AEF=60°,
因EF=AE,所以△AEF是等邊三角形,所以AF=AE,∠EAF=60°,在△ABE和△ACF中,AB=AC,∠BAE=∠CAF,AE=AF ,可判定△ABE≌△ACF,故①正確.②由∠ABC=∠FDC,可得AB∥DF,再因∠EAF=∠ACB=60°,可得AB∥AF,即可判定四邊形ABDF是平行四邊形,所以DF=AB=BC,故②正確.③由△ABE≌△ACF可得BE=CF,S△ABE=S△AFC,在△BCE和△FDC中,BC=DF,CE=CD,BE=CF ,可判定△BCE≌△FDC,所以S△BCE=S△FDC,即可得S△ABC=S△ABE+S△BCE=S△ACF+S△BCE=S△ABC=S△ACF+S△DCF,故③正確.④由△BCE≌△FDC,可得∠DBE=∠EFG,再由∠BED=∠FEG可判定△BDE∽△FGE,所以=,即=,又因BD=2DC,DC=DE,可得=2,即FG=2EG.故④正確.
考點:三角形綜合題.
【題型】填空題
【結(jié)束】
19
【題目】先化簡,再求值:(a+1-)÷(),其中a=2+.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,D、F是AB邊上的兩點,以DF為直徑的⊙O與BC相交于點E,連接EF,過F作FG⊥BC于點G,其中∠OFE=∠A.
(1)求證:BC是⊙O的切線;
(2)若sinB=,⊙O的半徑為r,求△EHG的面積(用含r的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)軸上兩點A、B所表示的數(shù)分別為a和b,且滿足。點E以每秒1個單位的速度從原點O出發(fā)向右運動,同時點M從點A出發(fā)以每秒7個單位的速度向左運動,點N從點B出發(fā),以每秒10個單位的速度向右運動,P、Q分別為ME、QN的中點。思考,在運動過程中,的值________________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)原計劃加工一批校服,現(xiàn)有甲、乙兩個工廠加工這批校服,已知甲工廠每天能加工這種校服16件,乙工廠每天加工這種校服24件,且單獨加工這批校服甲廠比乙廠要多用20天
(1)求這批校服共有多少件?
(2)為了盡快完成這批校服,若先由甲、乙兩工廠按原速度合作一段時間后,甲工廠停工,而乙工廠每天的速度提高25%,乙工廠單獨完成剩下的部分,且乙工廠全部工作時間是甲工廠工作時間的2倍還多4天,求乙工廠加工多少天
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形中,=120°,點E是邊的中點,P是對角線上的一個動點,若AB=2,則PB+PE的最小值是( )
A. 1B. C. 2D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點A1,A2,A3…和B1,B2,B3,…分別在直線y=x+b和x軸上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形如果點A1(1,1),那么點A2019的縱坐標(biāo)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某淘寶商家計劃平均每天銷售某品牌兒童滑板車100輛,但由于種種原因,實際每天的銷售量與計劃量相比有出入。下表是某周的銷售情況(超額記為正、不足記為負(fù)):
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
與計劃量的差值 | +4 | -3 | -5 | +14 | -8 | +21 | -6 |
(1)根據(jù)記錄的數(shù)據(jù)可知該店前三天共銷售該品牌兒童滑板車______輛。
(2)根據(jù)記錄的數(shù)據(jù)可知銷售量最多的一天比銷售量最少的一天多銷售______輛。
(3)該店實行每日計件工資制,每銷售一輛車可得40元,若超額完成任務(wù),則超過部分每輛另獎15元;少銷售一輛扣20元,那么該店鋪的銷售人員這一周的工資總額是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為選拔一名選手參加“美麗江門,我為僑鄉(xiāng)做代言”主題演講比賽,經(jīng)研究,按下圖所示的項目和權(quán)數(shù)對選拔賽參賽選手進(jìn)行考評(因排版原因統(tǒng)計圖不完整),下表是李明、張華在選拔賽中的得分情況:
服裝 | 普通話 | 主題 | 演講技巧 | |
李明 | 85 | 70 | 80 | 85 |
張華 | 90 | 75 | 75 | 80 |
結(jié)合以上信息,回答下列問題:
(1)求服裝項目在選手考評中的權(quán)數(shù);
(2)根據(jù)你所學(xué)的知識,幫助學(xué)校在李明、張華兩人中選擇一人參加“美麗江門,我為僑鄉(xiāng)做代言”主題演講比賽,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com