【題目】(定義學習)
定義:如果四邊形有一組對角為直角,那么我們稱這樣的四邊形為“對直四邊形”
(判斷嘗試)
在①梯形;②矩形:③菱形中,是“對直四邊形”的是哪一個. (填序號)
(操作探究)
在菱形ABCD中,于點E,請在邊AD和CD上各找一點F,使得以點A、E、C、F組成的四邊形為“對直四邊形”,畫出示意圖,并直接寫出EF的長,
(實踐應用)
某加工廠有一批四邊形板材,形狀如圖所示,若AB=3米,AD=1米,
.現(xiàn)根據客戶要求,需將每張四邊形板材進一步分割成兩個等腰三角形板材和一個“對直四邊形"板材,且這兩個等腰三角形的腰長相等,要求材料充分利用無剩余.求分割后得到的等腰三角形的腰長,
【答案】【判斷嘗試】②;【操作探究】EF的長為2,EF的長為;【實踐應用】方案1:兩個等腰三角形的腰長都為米.理由見解析,方案2:兩個等腰三角形的腰長都為2米.理由見解析,方案3:兩個等腰三角形的腰長都為米,理由見解析.方案4:兩個等腰三角形的腰長都為米,理由見解析.
【解析】
[判斷嘗試]根據“對直四邊形”定義和①梯形;②矩形:③菱形的性質逐一分析即可解答.
[操作探究]由菱形性質和30°直角三角形性質即可求得EF的長.
[實踐應用]先作出“對直四邊形”,容易得到另兩個等腰三角形,再利用等腰三角形性質和勾股定理即可求出腰長.
解: [判斷嘗試]
①梯形不可能一組對角為直角;③菱形中只有正方形的一組對角為直角,②矩形四個角都是直角,故矩形有一組對角為直角,為“對直四邊形”,
故答案為② ,
[操作探究]
F在邊AD上時,如圖:
∴四邊形AECF是矩形,
∴AE=CE,
又∵,
∴BE=1,AE=,CE=AF=1,
∴在Rt△AEF中,EF==2
EF的長為2.
F在邊CD上時,AF⊥CD,
∵四邊形ABCD是菱形,
∴AB=AD=2,∠B=∠D=60°,
又∵AE⊥BC,
∴∠BAE=∠BAF=30°,
∴AE=AF=,
∵∠BAD=120°,
∴∠EAF=60°,
∴△AEF為等邊三角形,
∴EF=AF=AE=
即:EF的長為;
故答案為2,.
[實踐應用]
方案1:如圖①,作,則四邊形ABCD分為等腰、等腰、“對直四邊形”ABED,其中兩個等腰三角形的腰長都為米.
理由:,∴四邊形ABED為矩形,
∴3米,
∵,
∴△DEC為等腰直角三角形,
∴DE=EC=3米,
∴DC=米,
∵,
∴=DC=米.
方案2:如圖②,作,則四邊形ABCD分為等腰△FEB、等腰△FEC、“對直四邊形”ABED,其中兩個等腰三角形的腰長都為2米.
理由:作,由(1)可知3米,BG=AD=1米,
∴BC=1+3=4米,
∵,
∴△BEC為等腰直角三角形,
∵,
∴BC=2米.
方案3:如圖③,作CD、BC的垂直平分線交于點E,連接ED、EB,則四邊形ABCD分為等腰△CED、等腰△CEB、“對直四邊形”ABED,其中兩個等腰三角形的腰長都為米.
理由:連接CE,并延長交AB于點F,
∵CD、BC的垂直平分線交于點E,∴,∴,
∴
.
連接DB,
DB==,
∵ED=EB,
∴△BED為等腰直角三角形,
∴ED=米,
∴米.
方案4:如圖④,作,交AB于點E,,
則四邊形ABCD分為等腰△AFE、等腰△AFD、“對直四邊形”BEDC,其中兩個等腰三角形的腰長都為米.
理由:作,交AB于點E,可證∠ADE45°,
∵,
∴△ADE為等腰直角三角形,
∴DE =米,
作,
∴DE=米.
科目:初中數(shù)學 來源: 題型:
【題目】某餐廳中1張餐桌可坐6人,有以下兩種擺放方式:
(1)對于方式一,4張桌子拼在一起可坐多少人?張桌子呢?對于方式二呢?
(2)該餐廳有40張這樣的長方形桌子,按方式一每5張拼成一張大桌子,則40張桌子可拼成8張大桌子,共可坐多少人?按方式二呢?
(3)在(2)中,若改成每8張拼成一張大桌子,則共可坐多少人?
(4)一天中午,該餐廳來了98為顧客共同就餐,但餐廳中只有25張這樣的長方形桌子可用,若你是這家餐廳的經理,你打算選擇哪種方式來擺餐桌呢?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知直角梯形ABCO中,∠AOC=90°,AB∥x軸,AB=6,若以O為原點,OA,OC所在直線為y軸和x軸建立如圖所示直角坐標系,A(0,a),C(c,0)中a,c滿足|a+c﹣10|+=0
(1)求出點A、B、C的坐標;
(2)如圖2,若點M從點C出發(fā),以2單位/秒的速度沿CO方向移動,點N從原點出發(fā),以1單位/秒的速度沿OA方向移動,設M、N兩點同時出發(fā),且運動時間為t秒,當點N從點O運動到點A時,點M同時也停止運動,在它們的移動過程中,當2S△ABN≤S△BCM時,求t的取值范圍:
(3)如圖3,若點N是線段OA延長上的一動點,∠NCH=k∠OCH,∠CNQ=k∠BNQ,其中k>1,NQ∥CJ,求的值(結果用含k的式子表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某餐廳中,一張桌子可坐6人,有如圖所示的兩種擺放方式:
(1)當有n張桌子時,兩種擺放方式各能坐多少人?
(2)一天中午餐廳要接待98位顧客共同就餐,但餐廳只有25張這樣的餐桌.若你是這個餐廳的經理,你打算選擇哪種方式來擺放餐桌?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有下列說法:
①2+3x-5x3是三次四項式;②﹣a一定在原點的左邊.③是分數(shù),它是有理數(shù);④有最大的負整數(shù),沒有最大的正整數(shù);⑤近似數(shù)5.60所表示的準確數(shù)x的范圍是:5.55≤x<5.65.其中錯誤的個數(shù)是( 。
A.2B.3C.4D.5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某保健品廠每天生產A,B兩種品牌的保健品共600瓶,A,B兩種產品每瓶的成本和利潤如下表,設每天生產A產品x瓶,生產這兩種產品每天共獲利y元.
A | B | |
成本(元/瓶) | 50 | 35 |
利潤(元/瓶) | 20 | 15 |
(1)請求出y關于x的函數(shù)關系式;
(2)如果該廠每天至少投入成本26 400元,那么每天至少獲利多少元?
(3)該廠每天生產的A,B兩種產品被某經銷商全部訂購,廠家對A產品進行讓利,每瓶利潤降低元,廠家如何生產可使每天獲利最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)已知代數(shù)式(kx2+6x+8)-(6x+5x2+2)化簡后的結果是常數(shù),求系數(shù)k的值.
(2)先化簡,再求值:2(-3xy-y2)-(2x2-7xy-2y2),其中x=3,y=-.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形OABC中,OA∥BC,∠OAB=90°,O為原點,點C的坐標為(2,8),點A的坐標為(26,0),點D從點B出發(fā),以每秒1個單位長度的速度沿BC向點C運動,點E同時從點O出發(fā),以每秒3個單位長度的速度沿折線OAB運動,當點E達到點B時,點D也停止運動,從運動開始,設D(E)點運動的時間為t秒.
(1)當t為何值時,四邊形ABDE是矩形;
(2)當t為何值時,DE=CO?
(3)連接AD,記△ADE的面積為S,求S與t的函數(shù)關系式.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com