【題目】在截面為半圓形的水槽內(nèi)裝有一些水,如圖水面寬AB為6分米,如果再注入一些水后,水面上升1分米,此時(shí)水面寬度變?yōu)?/span>8分米。則該水槽截面半徑為( )
A. 3分米 B. 4分米 C. 5分米 D. 10分米
【答案】C
【解析】
如圖,油面AB上升1分米得到油面CD,依題意得AB=6,CD=8,過(guò)O點(diǎn)作AB的垂線,垂足為E,交CD于F點(diǎn),連接OA,OC,由垂徑定理,得,,設(shè)OE=x,則OF=x-1,在中和中,根據(jù)勾股定理求得OA、OC的長(zhǎng)度,然后由,列方程求x即可求半徑OA,得出直徑MN.
:如圖,依題意得AB=6,CD=8,過(guò)O點(diǎn)作AB的垂線,垂足為E,交CD于F點(diǎn),連接OA,OC,
由垂徑定理,得,,設(shè)OE=x,則OF=x-1,
在中, ,
在中, ,
,
,
解得x=4,
半徑分米=5分米,
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)不透明的盒子中裝有顏色不同的8個(gè)小球,其中紅球3個(gè),黑球5個(gè).
(1)先從袋中取出m(m>1)個(gè)紅球,再?gòu)拇须S機(jī)摸出1個(gè)球,將“摸出黑球”記為事件A.請(qǐng)完成下列表格:
事件A | 必然事件 | 隨機(jī)事件 |
m的值 |
(2)先從袋中取出m個(gè)紅球,再放入m個(gè)一樣的黑球并搖勻,隨機(jī)摸出1個(gè)球是黑球的概率是,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在大課間活動(dòng)中,同學(xué)們積極參加體育鍛煉,小明就本班同學(xué)“我最喜愛(ài)的體育項(xiàng)目”進(jìn)行了一次調(diào)查統(tǒng)計(jì),下面是他通過(guò)收集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)圖中提供的信息,解答以下問(wèn)題:
(1)該班共有_____名學(xué)生;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)在扇形統(tǒng)計(jì)圖中,“乒乓球”部分所對(duì)應(yīng)的圓心角度數(shù)為_____;
(4)學(xué)校將舉辦體育節(jié),該班將推選5位同學(xué)參加乒乓球活動(dòng),有3位男同學(xué)(A,B,C)和2位女同學(xué)(D,E),現(xiàn)準(zhǔn)備從中選取兩名同學(xué)組成雙打組合,用樹(shù)狀圖或列表法求恰好選出一男一女組成混合雙打組合的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為解決樓房之間的擋光問(wèn)題,某地區(qū)規(guī)定:兩幢樓房間的距離至少為40米,中午12時(shí)不能擋光.如圖,某舊樓的一樓窗臺(tái)高1米,要在此樓正南方40米處再建一幢新樓.已知該地區(qū)冬天中午12時(shí)陽(yáng)光從正南方照射,并且光線與水平線的夾角最小為30°,在不違反規(guī)定的情況下,請(qǐng)問(wèn)新建樓房最高多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“面積法”是指利用圖形面積間的等量關(guān)系尋求線段間等量關(guān)系的一種方法.例如:在△ABC中,AB=AC,點(diǎn)P是BC所在直線上一個(gè)動(dòng)點(diǎn),過(guò)P點(diǎn)作PD⊥AB、PE⊥AC,垂足分別為D、E,BF為腰AC上的高.如圖①,當(dāng)點(diǎn)P在邊BC上時(shí),我們可得如下推理:
∵S△ABC=S△ABP+S△ACP
∴ACBF=ABPD+ACPE
∵AB=AC
∴ACBF=AC(PD+PE)
∴BF=PD+PE
(1)(變式)如圖②,在上例的條件下,當(dāng)點(diǎn)P運(yùn)動(dòng)到BC的延長(zhǎng)線上時(shí),試探究BF、PD、PE之間的關(guān)系,并說(shuō)明理由.
(2)(遷移)如圖③,點(diǎn)P是等邊△ABC內(nèi)部一點(diǎn),作PD⊥AB、PE⊥BC、PF⊥AC,垂足分別為D、E、F,若PD=1,PE=2,PF=4.求△ABC的邊長(zhǎng).
(3)(拓展)若點(diǎn)P是等邊△ABC所在平面內(nèi)一點(diǎn),且點(diǎn)P到三邊所在直線的距離分別為2、3、6.請(qǐng)直接寫(xiě)出等邊△ABC的高的所有可能
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=與直線交于A、B,直線AB交于y軸于點(diǎn)C,點(diǎn)P為線段OB上一個(gè)動(dòng)點(diǎn)(不與點(diǎn)O、B重合),當(dāng)△OPC為等腰三角形時(shí),點(diǎn)P的坐標(biāo):_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB是⊙O的直徑,點(diǎn)C,D在⊙O上,且AB=6,∠CAB=30°
求:(1)求∠ADC的度數(shù);
(2)如果OE⊥AC,垂足為E,求OE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,是原點(diǎn),(0,3),(4,0),是的角平分線.
(1)確定所在直線的函數(shù)表達(dá)式;
(2)在線段上是否有一點(diǎn),使點(diǎn)到軸和軸的距離相等,若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)在線段上是否有一點(diǎn),使是等腰三角形,若存在,直接寫(xiě)出 點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“臍橙結(jié)碩果,香飄引客來(lái)”,贛南臍橙以其“外表光潔美觀,肉質(zhì)脆嫩,風(fēng)味濃甜芳香”的特點(diǎn)飲譽(yù)中外.現(xiàn)欲將一批臍橙運(yùn)往外地銷(xiāo)售,若用2輛A型車(chē)和1輛B型車(chē)載滿(mǎn)臍橙一次可運(yùn)走10噸;用1輛A型車(chē)和2輛B型車(chē)載滿(mǎn)臍橙一次可運(yùn)走11噸.現(xiàn)有臍橙31噸,計(jì)劃同時(shí)租用A型車(chē)a輛,B型車(chē)b輛,一次運(yùn)完,且恰好每輛車(chē)都載滿(mǎn)臍橙.
根據(jù)以上信息,解答下列問(wèn)題:
(1)1輛A型車(chē)和1輛B型車(chē)都載滿(mǎn)臍橙一次可分別運(yùn)送多少?lài)崳?/span>
(2)請(qǐng)你幫該物流公司設(shè)計(jì)租車(chē)方案;
(3)若1輛A型車(chē)需租金100元/次,1輛B型車(chē)需租金120元/次.請(qǐng)選出費(fèi)用最少的租車(chē)方案,并求出最少租車(chē)費(fèi).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com