【題目】“面積法”是指利用圖形面積間的等量關(guān)系尋求線段間等量關(guān)系的一種方法.例如:在△ABC中,AB=AC,點P是BC所在直線上一個動點,過P點作PD⊥AB、PE⊥AC,垂足分別為D、E,BF為腰AC上的高.如圖①,當點P在邊BC上時,我們可得如下推理:
∵S△ABC=S△ABP+S△ACP
∴ACBF=ABPD+ACPE
∵AB=AC
∴ACBF=AC(PD+PE)
∴BF=PD+PE
(1)(變式)如圖②,在上例的條件下,當點P運動到BC的延長線上時,試探究BF、PD、PE之間的關(guān)系,并說明理由.
(2)(遷移)如圖③,點P是等邊△ABC內(nèi)部一點,作PD⊥AB、PE⊥BC、PF⊥AC,垂足分別為D、E、F,若PD=1,PE=2,PF=4.求△ABC的邊長.
(3)(拓展)若點P是等邊△ABC所在平面內(nèi)一點,且點P到三邊所在直線的距離分別為2、3、6.請直接寫出等邊△ABC的高的所有可能
【答案】(1)BF=PD﹣PE,理由見解析;(2);(3)11,7,5,1.
【解析】
(1)如圖②,連接AP,根據(jù)S△ABC=S△ABP﹣S△ACP列式,即可得到結(jié)論;
(2)如圖③,過A作AH⊥BC于H,連接PA,PB,PC,根據(jù)面積法求出AH=PD+PE+PF=7,然后根據(jù)等邊三角形的性質(zhì)得到CH=BC=AC,在Rt△AHC中利用勾股定理構(gòu)建方程即可得到結(jié)論;
(3)如圖④,設等邊△ABC的高為h,點P到△ABC的三邊的距離為h1=2,h2=3,h3=6,分三種情況討論即可得到結(jié)論.
解:(1)BF=PD﹣PE,
如圖②,連接AP,
∵S△ABC=S△ABP﹣S△ACP,
∴ACBF=ABPD﹣ACPE,
∵AB=AC,
∴BF=PD﹣PE;
(2)如圖③,過A作AH⊥BC于H,連接PA,PB,PC,
∵S△ABC=S△ABP+S△ACP+S△BCP,即AHBC=PDAB+PFAC+PEBC,
∵△ABC是等邊三角形,
∴AB=AC=BC,
∴AH=PD+PE+PF=7,
∵AB=AC,AH⊥BC,
∴CH=BC=AC,
在Rt△AHC中,∠AHC=90°,
∴AH2+CH2=AC2,即49+AC2=AC2,
∴AC==;
(3)如圖④,設等邊△ABC的高為h,點P到△ABC的三邊的距離為h1=2,h2=3,h3=6,
當P在i區(qū)域時,由(2)可得h=h1+h2+h3=2+3+6=11;
當P在iii區(qū)域時,如圖④-1,PF=h1=2,PE=h2=3,PG=h3=6,連接
∵S△ABC=S△PBC-S△ACP-S△ABP=hBC=PGBC-PEAC-PFAB,
∵AB=AC=BC,
∴h=h3﹣h2﹣h1=1,
當P在ii區(qū)域時,同理可得h=h1+h3﹣h2=2+6﹣3=5或h=h2+h3﹣h1=3+6﹣2=7,
綜上所述,等邊△ABC的高的所有可能的值為11,1,7,5.
科目:初中數(shù)學 來源: 題型:
【題目】已知等腰三角形的一邊等于4cm,一邊等于9cm,那么它的周長等于_____cm;若等腰三角形的一個角為70°,則它的另兩個角是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】《孫子算經(jīng)》是中國傳統(tǒng)數(shù)學最重要的著作,約成書于四、五世紀.現(xiàn)在傳本的《孫子算經(jīng)》共三卷.卷上敘述算籌記數(shù)的縱橫相間制度和籌算乘除法則;卷中舉例說明籌算分數(shù)算法和籌算開平方法;卷下記錄算題,不但提供了答案,而且還給出了解法.其中記載:“今有木,不知長短.引繩度之,余繩四尺五,屈繩量之,不足一尺.問木長幾何?”
譯文:“用一根繩子去量一根長木,繩子還剩余4.5尺,將繩子對折再量長木,長木還剩余1尺,問長木長多少尺?”
請解答上述問題.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,兩塊完全一樣的含30°角的直角三角板,將它們重疊在一起并繞其較長直角邊的中點M轉(zhuǎn)動,使上面一塊三角板的斜邊剛好過下面一塊三角板的直角頂點C.已知AC=4,則這兩塊直角三角板頂點A、A′之間的距離等于___________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠ABC=∠ADC=90°,AB=AD,E是AC的中點.
(1)求證:∠EBD=∠EDB
(2)若∠BED=120°,試判斷△BDC的形狀.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在截面為半圓形的水槽內(nèi)裝有一些水,如圖水面寬AB為6分米,如果再注入一些水后,水面上升1分米,此時水面寬度變?yōu)?/span>8分米。則該水槽截面半徑為( )
A. 3分米 B. 4分米 C. 5分米 D. 10分米
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,H是△ABC的高AD,BE的交點,且DH=DC,則下列結(jié)論:①BD=AD;②BC=AC;③BH=AC;④CE=CD中正確的有( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù),點在該函數(shù)的圖象上,點到軸、軸的距離分別為、.設,下列結(jié)論中:
①沒有最大值;②沒有最小值;③時,隨的增大而增大;
④滿足的點有四個.其中正確結(jié)論的個數(shù)有( )
A. 個 B. 個 C. 個 D. 個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點E在邊BC上,∠1=∠2,∠C=∠AED,BC=DE
(1)求證:AB=AD
(2)若∠C=70°,求∠BED的度數(shù)。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com