【題目】已知一個等腰三角形的兩邊長是3cm7cm,則它的周長為(  )

A. 13cm B. 17cm C. 1317cm D. 10cm

【答案】B

【解析】根據(jù)等腰三角形的性質(zhì),可知三角形的三邊可能為3、3、73、7、7,然后根據(jù)三角形的三邊關(guān)系可知只能是3、7、7,因此周長為3+7+7=17cm.

故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列四個命題中,錯誤的命題是( ).

A.四條邊都相等的四邊形是菱形;

B.對角線互相垂直平分的四邊形是正方形;

C.有三個角是直角的四邊形是矩形;

D.一組對邊平行且相等,對角線垂直且相等的四邊形是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若m是一元二次方程x2﹣5x﹣2=0的一個實數(shù)根,則2014﹣m2+5m的值是(
A.2011
B.2012
C.2013
D.2014

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在有理數(shù)2、3、-4、-5、6中,任取兩個數(shù)相乘所得積最大是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O直徑AB和弦CD相交于點E,AE=2,EB=6,DEB=30°,求弦CD長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在方格紙內(nèi)將△ABC經(jīng)過一次平移后得到△A′B′C′,圖中標(biāo)出了點B的對應(yīng)點B′.
(1)補全△A′B′C′根據(jù)下列條件,利用網(wǎng)格點和三角板畫圖:
(2)畫出AB邊上的中線CD;
(3)畫出BC邊上的高線AE;
(4)△A′B′C′的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在ABC中,AB=AC,D為邊BC上一點,以AB,BD為鄰邊作平行四邊形ABDE,連接AD,EC.

(1)求證:ADC≌△ECD;

(2)當(dāng)點D在什么位置時,四邊形ADCE是矩形,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個不透明袋子中有1個紅球,1個綠球和n個白球,這些球除顏色外無其他差別.

(1)當(dāng)n=1時,從袋中隨機摸出1個球,摸到紅球和摸到白球的可能性是否相同?

(2)從袋中隨機摸出一個球,記錄其顏色,然后放回,大量重復(fù)該實驗,發(fā)現(xiàn)摸到綠球的頻率穩(wěn)定于0.25,則n的值是 ;

(3)當(dāng)n=2時,先從袋中任意摸出1個球不放回,再從袋中任意摸出1個球,請用列表或畫樹狀圖的方法,求兩次都摸到白球的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們運用圖(Ⅰ)中大正方形的面積可表示為(a+b)2 , 也可表示為c3+4(ab),即(a+b)2=c2+4(ab)由此推導(dǎo)出一個重要的結(jié)論a2+b2=c2 , 這個重要的結(jié)論就是著名的“勾股定理”.這種根據(jù)圖形可以極簡單地直觀推論或驗證數(shù)學(xué)規(guī)律和公式的方法,簡稱“無字證明”.

(1)請你用圖(Ⅱ)(2002年國際數(shù)學(xué)家大會會標(biāo))的面積表達式驗證勾股定理(其中四個直角三角形的較大的直角邊長都為a,較小的直角邊長都為b,斜邊長都為c).
(2)請你用(Ⅲ)提供的圖形進行組合,用組合圖形的面積表達式驗證:(x+2y)2=x2+4xy+4y2

查看答案和解析>>

同步練習(xí)冊答案