【題目】計算:整式的運算和分式的化簡
(1)(x+3)2﹣x(x+2);
(2) ÷( + )
【答案】
(1)解:原式=x2+6x+9﹣x2﹣2x=4x+9
(2)解:原式= ÷ = =
【解析】(1)利用完全平方公式和去括號法則,合并同類項法則即可;(2)分式化簡的基本方法有通分、約分,分子分母出現(xiàn)多項式時看能否分解因式,便于約分.
【考點精析】本題主要考查了分式的混合運算和單項式乘多項式的相關知識點,需要掌握運算的順序:第一級運算是加法和減法;第二級運算是乘法和除法;第三級運算是乘方.如果一個式子里含有幾級運算,那么先做第三級運算,再作第二級運算,最后再做第一級運算;如果有括號先做括號里面的運算.如順口溜:"先三后二再做一,有了括號先做里."當有多層括號時,先算括號內(nèi)的運算,從里向外{[(?)]};單項式與多項式相乘,就是根據(jù)分配律用單項式去乘多項式的每一項,再把所得的積相加才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】為籌備迎新生晚會,同學們設計了一個圓筒形燈罩,底色漆成白色,然后纏繞紅色油紙.如圖,已知圓筒高108cm,其圓筒底面周長為36cm,如果在表面纏繞油紙4圈,應裁剪油紙的最短為_____cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,拋物線 y=ax2+bx+c 與 x 軸交于A(1,0),B(-3,0),與 y 軸交于C(0,3),頂點是G.
(1)求拋物線的的解析式及頂點坐標G.
(2)如圖1,點D(x,y)是線段BG上的動點(不與B,G重合),DE⊥x軸于E,設四邊形OEDC的面積為S,求S與x之間的函數(shù)關系式,并求S的最大值.
(3)如圖2,將拋物線 y=ax2+bx+c 向下平移 k 個單位,平移后的頂點式 G' ,與 x 軸的交點是 A',B' .若△A'B'G' 是直角三角形,求 k 的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知是的平分線,點是射線上一點,點C、D分別在射線、上,連接PC、PD.
(1)發(fā)現(xiàn)問題
如圖①,當,時,則PC與PD的數(shù)量關系是________.
(2)探究問題
如圖②,點C、D在射線OA、OB上滑動,且∠AOB=90°,∠OCP+∠ODP=180°,當時,PC與PD在(1)中的數(shù)量關系還成立嗎?說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩人在一條直線道路上分別從相距1500米的A,B 兩點同時出發(fā),相向而行,當兩人相遇后,甲繼續(xù)向點B前進(甲到達點B時停止運動),乙也立即向B點返回.在整個運動過程中,甲、乙均保持勻速運動.甲、乙兩人之間的距離y(米)與乙運動的時間x(秒) 之間的關系如圖所示.則甲到B點時,乙距B點的距離是米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在兩面墻之間有一個底端在A點的梯子,當它靠在一側的墻上時,梯子的頂端在B點,當它靠在另一側的墻上時,梯子的頂端在D點,已知∠BAC=60°,點B到地面的垂直距離BC=5米,DE=6米.
(1)求梯子的長度;
(2)求兩面墻之間的距離CE.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為加快5G網(wǎng)絡建設,某移動通信公司在山頂上建了一座5G信號通信塔AB,山高BE=100米(A,B,E在同一直線上),點C與點D分別在E的兩側(C,E,D在同一直線上),BE⊥CD,CD之間的距離1000米,點D處測得通信塔頂A的仰角是30°,點C處測得通信塔頂A的仰角是45°(如圖),則通信塔AB的高度約為( 。┟祝▍⒖紨(shù)據(jù):,)
A.350B.250C.200D.150
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將矩形ABCD繞點A旋轉至矩形AB′C′D′位置.此時AC′的中點恰好與點D重合,AB′交CD于點E,若AB=3,則△AEC的面積為( )
A.3
B.
C.2
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】近日天氣晴朗,某集團公司準備組織全體員工外出踏青.決定租用甲、乙、丙三種型號的巴士出行,甲型巴士每輛車的乘載量是乙型巴士的3倍,丙型巴士每輛可乘坐36人.現(xiàn)在旅游公司有甲、乙、丙型巴士若干輛,預計給該集團公司安排申型、丙型巴士共計8輛,其余員工安排乙型巴士,每輛巴士均滿載,這樣乘坐乙型巴士和丙型巴士的員工共296人.臨行前,突然有若干人因特殊原因請假,這樣一來剛好可以減少租用一輛乙型包士,且有一輛乙型巴士多出兩個空位,這樣甲、乙兩種型號巴士共計裝載178人;則該集團公司共有________名員工.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com