分析 (1)連接OE、OB、OC.由題意可證明$\widehat{BE}=\widehat{CE}$,于是得到∠BOE=∠COE,由等腰三角形三線合一的性質(zhì)可證明OE⊥BC,于是可證明OE⊥l,故此可證明直線l與⊙O相切;
(2)先由角平分線的定義可知∠ABF=∠CBF,然后再證明∠CBE=∠BAF,于是可得到∠EBF=∠EFB,最后依據(jù)等角對(duì)等邊證明BE=EF即可;
(3)先求得BE的長,然后證明△BED∽△AEB,由相似三角形的性質(zhì)可求得AE的長,于是可得到AF的長.
解答 解:(1)直線l與⊙O相切.
理由:如圖1所示:連接OE、OB、OC.
∵AE平分∠BAC,
∴∠BAE=∠CAE.
∴$\widehat{BE}=\widehat{CE}$.
∴∠BOE=∠COE.
又∵OB=OC,
∴OE⊥BC.
∵l∥BC,
∴OE⊥l.
∴直線l與⊙O相切.
(2)∵BF平分∠ABC,
∴∠ABF=∠CBF.
又∵∠CBE=∠CAE=∠BAE,
∴∠CBE+∠CBF=∠BAE+∠ABF.
又∵∠EFB=∠BAE+∠ABF,
∴∠EBF=∠EFB.
∴BE=EF.
(3)由(2)得BE=EF=DE+DF=7.
∵∠DBE=∠BAE,∠DEB=∠BEA,
∴△BED∽△AEB.
∴$\frac{DE}{BE}=\frac{BE}{AE}$,即$\frac{4}{7}=\frac{7}{AE}$,解得;AE=$\frac{49}{4}$.
∴AF=AE-EF=$\frac{49}{4}$-7=$\frac{21}{4}$.
點(diǎn)評(píng) 本題主要考查的是圓的性質(zhì)、相似三角形的性質(zhì)和判定、等腰三角形的性質(zhì)、三角形外角的性質(zhì)、切線的判定,證得∠EBF=∠EFB是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | ②④⑤⑥ | B. | ①③⑤⑥ | C. | ②③④⑥ | D. | ①③④⑤ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 2π | B. | π | C. | $\frac{π}{3}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com