【題目】如圖,△ABC是⊙O的內(nèi)接三角形,∠C=30°,⊙O的半徑為5,若點(diǎn)P是⊙O上的一點(diǎn),在△ABP中,PB=AB,則PA的長(zhǎng)為( )

A.5
B.
C.5
D.5

【答案】D
【解析】解:連接OA、OB、OP,

∵∠C=30°,
∴∠APB=∠C=30°,
∵PB=AB,
∴∠PAB=∠APB=30°
∴∠ABP=120°,
∵PB=AB,
∴OB⊥AP,AD=PD,
∴∠OBP=∠OBA=60°,
∵OB=OA,
∴△AOB是等邊三角形,
∴AB=OA=5,
則Rt△PBD中,PD=cos30°PB= ×5= ,
∴AP=2PD=5
所以答案是:D.
【考點(diǎn)精析】關(guān)于本題考查的垂徑定理和圓周角定理,需要了解垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條。豁旤c(diǎn)在圓心上的角叫做圓心角;頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角;一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一次函數(shù) 與二次函數(shù) 在同一直角坐標(biāo)系中的圖象可能是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,∠ABC60°,點(diǎn)E,F分別在CDBC的延長(zhǎng)線上,AEBD,EFBC,CF

1)求證:四邊形ABDE是平行四邊形;

2)求AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是用4個(gè)全等的直角三角形與1個(gè)小正方形鑲嵌而成的正方形圖案,已知大正方形面積為49,小正方形面積為4,若用表示直角三角形的兩直角邊(),下列四個(gè)說(shuō)法:

,,.

其中說(shuō)法正確的是 …………………………………………………………( )

A. ①② B. ①②③ C. ①②④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,中,,,的平分線于點(diǎn),平分.給出下列結(jié)論:①;②;③;④;⑤.其中正確的結(jié)論是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在△ABC 中,AB=AC,∠BAC=90°,D BC 上一點(diǎn),EC⊥BC,EC=BD,DF=FE.

求證:(1)△ABD≌△ACE;

(2)AFDE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某超市小明買了1千克甲種糖果和2千克乙種糖果,共付38元;小強(qiáng)買了2千克甲種糖果和0.5千克乙種糖果,共付27元.

(1)求該超市甲、乙兩種糖果每千克各需多少元?

(2)某顧客到該超市購(gòu)買甲、乙兩種糖果共20千克混合,欲使總價(jià)不超過(guò)240元,問(wèn)該顧客混合的糖果中甲種糖果最少多少千克?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等腰直角△ABC中,AB=AC=8,以AB為直徑的半圓O交斜邊BC于D,則陰影部分的面積為(結(jié)果保留π)( )

A.
B.
C.
D.16

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】探究:如圖①,在正方形ABCD中,點(diǎn)P在邊CD上(不與點(diǎn)C、D重合),連接BP,將BCP繞點(diǎn)C順時(shí)針旋轉(zhuǎn)至DCE,點(diǎn)B的對(duì)應(yīng)點(diǎn)是點(diǎn)D.旋轉(zhuǎn)的角度是 .應(yīng)用:將圖①中的BP延長(zhǎng)交邊DE于點(diǎn)F,其它條件不變,如圖②,求∠BFE的度數(shù)。拓展:如圖②,若DP=2CP,BC=6,則四邊形ABED的面積是 .

查看答案和解析>>

同步練習(xí)冊(cè)答案