【題目】已知:如圖,在△ABC 中,AB=AC,∠BAC=90°,D 是BC 上一點,EC⊥BC,EC=BD,DF=FE.
求證:(1)△ABD≌△ACE;
(2)AF⊥DE.
【答案】(1)證明見解析;(2)證明見解析.
【解析】
(1)根據(jù)等腰三角形兩底角相等求出∠B=∠BCA=45°,再求出∠ACE=45°,從而得到∠B=∠ACE,然后利用“邊角邊”即可證明△ABD≌△ACE;(2)根據(jù)全等三角形對應邊相等可得AD=AE,然后利用等腰三角形三線合一的性質證明即可.
(1)∵AB=AC,∠BAC=90°,
∴∠B=∠BCA=45°,
∵EC⊥BC,
∴∠ACE=90°﹣45°=45°,
∴∠B=∠ACE,
在△ABD和△ACE中,,
∴△ABD≌△ACE(SAS);
(2)由(1)知,△ABD≌△ACE,
∴AD=AE,
等腰△ADE中,∵DF=FE,
∴AF⊥DE.
科目:初中數(shù)學 來源: 題型:
【題目】閱讀與計算:請閱讀以下材料,并完成相應的任務.
斐波那契(約1170﹣1250)是意大利數(shù)學家,他研究了一列數(shù),這列數(shù)非常奇妙,被稱為斐波那契數(shù)列(按照一定順序排列著的一列數(shù)稱為數(shù)列).后來人們在研究它的過程中,發(fā)現(xiàn)了許多意想不到的結果,在實際生活中,很多花朵(如梅花、飛燕草、萬壽菊等)的瓣數(shù)恰是斐波那契數(shù)列中的數(shù).斐波那契數(shù)列還有很多有趣的性質,在實際生活中也有廣泛的應用.斐波那契數(shù)列中的第n個數(shù)可以用表示(其中,n≥1).這是用無理數(shù)表示有理數(shù)的一個范例.
任務:請根據(jù)以上材料,通過計算求出斐波那契數(shù)列中的第1個數(shù)和第2個數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在長方形ABCD中,AB=4,AD=6.延長BC到點E,使CE=2,連接DE,動點P從點B出發(fā),以每秒2個單位的速度沿BC﹣CD﹣DA向終點A運動,設點P的運動時間為t秒,當t的值為_____秒時,△ABP和△DCE全等.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在同一直角坐標系中,函數(shù)y=mx+m和y=﹣mx2+2x+2(m是常數(shù),且m≠0)的圖象可能是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,由下列條件可判定哪兩條直線平行,并說明根據(jù).
(1)∠1=∠2,________________________.
(2)∠A=∠3,________________________.
(3)∠ABC+∠C=180°,________________________.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com