【題目】探究:如圖①,在正方形ABCD中,點(diǎn)P在邊CD上(不與點(diǎn)C、D重合),連接BP,將BCP繞點(diǎn)C順時(shí)針旋轉(zhuǎn)至DCE,點(diǎn)B的對(duì)應(yīng)點(diǎn)是點(diǎn)D.旋轉(zhuǎn)的角度是 .應(yīng)用:將圖①中的BP延長(zhǎng)交邊DE于點(diǎn)F,其它條件不變,如圖②,求∠BFE的度數(shù)。拓展:如圖②,若DP=2CP,BC=6,則四邊形ABED的面積是 .

【答案】探究:90;應(yīng)用:;拓展:42

【解析】

(1)由旋轉(zhuǎn)性質(zhì)即可得到旋轉(zhuǎn)角的度數(shù);

(2)由旋轉(zhuǎn)的性質(zhì),得到,由全等三角形對(duì)應(yīng)角相等,得到再由直角三角形兩個(gè)銳角互余和等量代換,即可得到,即;

(3)由,得到CE=PC,由DP=2CP,BC=6,得CE=2,則四邊形ABED的面積=S正方形ABCD+SCDE.

探究:由旋轉(zhuǎn)性質(zhì)可得旋轉(zhuǎn)角=BCD=DCE=90°;

故答案為:90°;

應(yīng)用:由旋轉(zhuǎn),得

,

,

,

;

拓展:∵

CE=PC,

DP=2CP,BC=6,

CE=2,

S四邊形ABED =S正方形ABCD+SCDE=6×6+×6×2=36+6=42,

故答案為:42.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ADBC邊上的中線,EAD的中點(diǎn),過點(diǎn)ABC的平行線交BE的延長(zhǎng)線于點(diǎn)F,連接CF.

(1)求證:AF=DC ;

(2)若∠BAC=,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,點(diǎn)M是二次函數(shù)y=ax2(a>0)圖象上的一點(diǎn),點(diǎn)F的坐標(biāo)為(0, ),直角坐標(biāo)系中的坐標(biāo)原點(diǎn)O與點(diǎn)M,F(xiàn)在同一個(gè)圓上,圓心Q的縱坐標(biāo)為

(1)求a的值;
(2)當(dāng)O,Q,M三點(diǎn)在同一條直線上時(shí),求點(diǎn)M和點(diǎn)Q的坐標(biāo);
(3)當(dāng)點(diǎn)M在第一象限時(shí),過點(diǎn)M作MN⊥x軸,垂足為點(diǎn)N,求證:MF=MN+OF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中,滿足y的值隨x的值增大而增大的是( 。
A.y=﹣2x
B.y=3x﹣1
C.y=
D.y=x2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用一條長(zhǎng)為18cm的細(xì)繩圍成一個(gè)等腰三角形.

(1)如果腰長(zhǎng)是底邊長(zhǎng)的2倍,求三角形各邊的長(zhǎng);

(2)能圍成有一邊的長(zhǎng)是4cm的等腰三角形嗎?若能,求出其他兩邊的長(zhǎng);若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工藝廠計(jì)劃一周生產(chǎn)工藝品2100個(gè),平均每天生產(chǎn)300個(gè),但實(shí)際每天生產(chǎn)量與計(jì)劃相比有出入.下表是某周的生產(chǎn)情況 (超產(chǎn)記為正.減產(chǎn)記為負(fù)):

(1) 寫出該廠星期一生產(chǎn)工藝品的數(shù)量;

(2) 本周產(chǎn)量中最多的一天比最少的一天多生產(chǎn)多少個(gè)工藝品?

(3) 請(qǐng)求出該工藝廠在本周實(shí)際生產(chǎn)工藝品的數(shù)量.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:

1 (2)

(3) (4)

【答案】(1) ;(2) ;(3) ; (4)

【解析】試題分析:(1)分子、分母分解因式后約分即可;

(2)先通分計(jì)算括號(hào)內(nèi)分式的減法,然后把除法轉(zhuǎn)化為乘法,分子、分母分解因式后約分即可;

(3)第二個(gè)分式分子、分母分解因式后約分,然后通分轉(zhuǎn)化為同分母分式,最后依照同分母分式的加減法則計(jì)算即可;

(4)先通分計(jì)算括號(hào)內(nèi)分式的減法,然后把除法轉(zhuǎn)化為乘法,分子、分母分解因式后約分即可.

試題解析:

解:1)原式

;

2)原式

3)原式

;

4)原式

點(diǎn)睛:此題考查了分式的混合運(yùn)算,熟練掌握運(yùn)算法則和運(yùn)算順序是解本題的關(guān)鍵.

型】解答
結(jié)束】
20

【題目】解分式方程:

(1) (2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解

,即23

的整數(shù)部分為2,小數(shù)部分為2,

112

1的整數(shù)部分為1

1的小數(shù)部分為2

解決問題:已知:a3的整數(shù)部分,b3的小數(shù)部分,

求:(1a,b的值;

2)(﹣a3+b+42的平方根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中(AD>AB),點(diǎn)EBC上一點(diǎn),且DE=DA,AF⊥DE,垂足為點(diǎn)F,在下列結(jié)論中,不一定正確的是(  )

A. △AFD≌△DCE B. AF=AD C. AB=AF D. BE=AD﹣DF

查看答案和解析>>

同步練習(xí)冊(cè)答案