【題目】如圖,內(nèi)接于,且為的直徑.的平分線交于點,過點作的切線交的延長線于點,過點作于點,過點作于點.
(1)求證:;
(2)試猜想線段,,之間有何數(shù)量關(guān)系,并加以證明;
(3)若,,求線段的長.
【答案】(1)見解析;(2),證明見解析;(3)
【解析】
(1)連結(jié)OD,先由已知△ABD是等腰直角三角形,得DO⊥AB,再根據(jù)切線的性質(zhì)得OD⊥PD,于是可得到DP∥AB;
(2)由“一線三垂直模型”易得,進(jìn)而可得.
(3)利用勾股定理依次可求直徑AB=10,,,得,再證明可得,,進(jìn)而由求得PD即可.
(1)證明:連結(jié),如圖,
∵為的直徑,
∴,
∵的平分線交于點,
∴,
∴,
∴為等腰直角三角形,
∴,
∵為的切線,
∴,
∴;
(2)答:,證明如下:
∵是的直徑,
∴,
∵,,
∴,
∴,
∴,
∵,
∴,
在和中,
∴,
∴,,
∴,
即.
(3)解:在中,,
∵為等腰直角三角形,
∴
∵,
∴為等腰直角三角形,
∴,
在中,,
∴,
∵,,
∴,
∴,
∴,,
而,
∴,
∴.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,∠ABC=45°,BC=7cm,AB=cm。點P從點B出發(fā)沿BC方向向點C運動,當(dāng)點P到點C時,停止運動
(1)如圖2,過點P作PQ⊥BC,PQ交AB于點Q,以PQ為一邊向右側(cè)作矩形PQRS,若點R恰好在邊AC上,且滿足QR=2PQ.求BP得值.
(2)以點P為圓心,BP為半徑作圓.
①如圖3,當(dāng)⊙P與邊AC相切于點E時,求BP的值;
②隨著BP的變化,⊙P與△ABC三邊的公共點的個數(shù)也在變化,請直接寫出公共點個數(shù)與對應(yīng)的BP的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知拋物線y=﹣x+3與x軸交于A和B兩點,(點A在點B的左側(cè)),與y軸交于點C.
(1)求出直線BC的解析式.
(2)M為線段BC上方拋物線上一動點,過M作x軸的垂線交BC于H,過M作MQ⊥BC于Q,求出△MHQ周長最大值并求出此時M的坐標(biāo);當(dāng)△MHQ的周長最大時在對稱軸上找一點R,使|AR﹣MR|最大,求出此時R的坐標(biāo).
(3)T為線段BC上一動點,將△OCT沿邊OT翻折得到△OC′T,是否存在點T使△OC′T與△OBC的重疊部分為直角三角形,若存在請求出BT的長,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 在平面直角坐標(biāo)系中的位置如圖,其中每個小正方形的邊長為個單位長度.
畫出關(guān)于原點的中心對稱圖形;
畫出將繞點順時針旋轉(zhuǎn)得到.
在的條件下,求點旋轉(zhuǎn)到點所經(jīng)過的路線長(結(jié)果保留).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,四邊形ABCD中,對角線AC平分∠DCB,且AD=AB,CD<CB
(1)求證:∠B+∠D=180°;
(2)如圖2,在AC上取一點E,使得BE∥CD,且BE=CE,點F在線段BC上,連接AF,且AB=AF,求證:AE=CF;
(3)如圖3,在(2)的條件下,若BE與AF交于點G,BF:AB=2:7,求tan∠BGF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“分組合作學(xué)習(xí)”成為我市推動課堂教學(xué)改革,打造自主高效課堂的重要舉措.某中學(xué)從全校學(xué)生中隨機(jī)抽取100人作為樣本,對“分組合作學(xué)習(xí)”實施前后學(xué)生的學(xué)習(xí)興趣變化情況進(jìn)行調(diào)查分析,統(tǒng)計如下:
分組前學(xué)生學(xué)習(xí)興趣 分組后學(xué)生學(xué)習(xí)興趣
請結(jié)合圖中信息解答下列問題:
(1)求出分組前學(xué)生學(xué)習(xí)興趣為“高”的所占的百分比為 ;
(2)補(bǔ)全分組后學(xué)生學(xué)習(xí)興趣的統(tǒng)計圖;
(3)通過“分組合作學(xué)習(xí)”前后對比,請你估計全校2000名學(xué)生中學(xué)習(xí)興趣獲得提高的學(xué)生有多少人?請根據(jù)你的估計情況談?wù)剬?/span>“分組合作學(xué)習(xí)”這項舉措的看法.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=﹣x2+x+3的圖象與x軸交于點A、B(B在A右側(cè)),與y軸交于點C.
(1)求點A、B、C的坐標(biāo);
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,AB是⊙O的直徑,AC是弦,點P是的中點,PE⊥AC交AC的延長線于E.
(1)求證:PE是⊙O的切線;
(2)如圖2,作PH⊥AB于H,交BC于N,若NH=3,BH=4,求PE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一般情況下,中學(xué)生完成數(shù)學(xué)家庭作業(yè)時,注意力指數(shù)隨時間x(分鐘)的變化規(guī)律如圖所示(其中AB、BC為線段,CD為雙曲線的一部分).
(1)分別求出線段AB和雙曲線CD的函數(shù)關(guān)系式;
(2)若學(xué)生的注意力指數(shù)不低于40為高效時間,根據(jù)圖中信息,求出一般情況下,完成一份數(shù)學(xué)家庭作業(yè)的高效時間是多少分鐘?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com