【題目】一般情況下,中學生完成數(shù)學家庭作業(yè)時,注意力指數(shù)隨時間x(分鐘)的變化規(guī)律如圖所示(其中AB、BC為線段,CD為雙曲線的一部分).

(1)分別求出線段AB和雙曲線CD的函數(shù)關系式;

(2)若學生的注意力指數(shù)不低于40為高效時間,根據(jù)圖中信息,求出一般情況下,完成一份數(shù)學家庭作業(yè)的高效時間是多少分鐘?

【答案】(1)AB解析式為:y1=2x+30(0≤x≤10),曲線CD的解析式為:y2=(x≥44);(2)完成一份數(shù)學家庭作業(yè)的高效時間是50分鐘

【解析】分析:(1)、利用待定系數(shù)法分別求出函數(shù)解析式;(2)、將y=40分別代入兩個函數(shù)解析式分別求出x的值,然后進行做差得出答案.

詳解:(1)設線段AB所在的直線的解析式為y1=k1x+30, B(10,50)代入得,k1=2,

AB解析式為:y1=2x+30(0≤x≤10). C、D所在雙曲線的解析式為y2=

C(44,50)代入得,k2=2200, ∴曲線CD的解析式為:y2=(x≥44);

(2)將y=40代入y1=2x+30得:2x+30=40,解得:x=5,

y=40代入y2=得:x=55. 55﹣5=50.

所以完成一份數(shù)學家庭作業(yè)的高效時間是50分鐘.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bc+c的圖象如圖所示,則下列判斷中錯誤的是( 。

A. 圖象的對稱軸是直線x=﹣1 B. x>﹣1時,yx的增大而減小

C. 當﹣3<x<1時,y<0 D. 一元二次方程ax2+bx+c=0的兩個根是﹣3,1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,在平面直角坐標系中,雙曲線與直線都經過點

1)求的值;

2)此雙曲線又經過點,點軸的負半軸上的一點,且點軸的距離是2 ,聯(lián)結、、,

的面積;

軸上,為等腰三角形,請直接寫出點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】由一些大小相同,棱長為1的小正方體搭成的幾何體的俯視圖如圖所示,數(shù)字表示該位置的正方體個數(shù).

(1)請畫出它的主視圖和左視圖;

(2)給這個幾何體噴上顏色(底面不噴色),需要噴色的面積為

(3)在不改變主視圖和俯視圖的情況下,最多可添加 塊小正方體.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,根據(jù)圖象提供的信息,下列結論正確的是(

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩名隊員參加射擊訓練,成績分別被制成下列兩個統(tǒng)計圖:

根據(jù)以上信息,整理分析數(shù)據(jù)如下:

1)寫出表格中a,b,c的值:a  ,b  ,c  

2)如果乙再射擊一次,命中7環(huán),那么乙的射擊成績的方差  .(填變大”“變小”“不變

3)教練根據(jù)這10次成績若選擇甲參加比賽,教練的理由是什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)是常數(shù))

(1)求證:不論為何值,該函數(shù)圖象與軸一定有兩個公共點。

(2)若該函數(shù)圖象經過點(0,-2),則該函數(shù)圖象怎樣平移經過原點?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了發(fā)展學生的核心素養(yǎng),培養(yǎng)學生的綜合能力,某中學利用陽光大課間,組織學生積極參加豐富多彩的課外活動,學校成立了舞蹈隊、足球隊、籃球隊、毽子隊、射擊隊等,其中射擊隊在某次訓練中,甲、乙兩名隊員各射擊10發(fā)子彈,成績記錄如表:

射擊次序(次)

1

2

3

4

5

6

7

8

9

10

甲的成績(環(huán))

8

9

7

9

8

6

7

a

10

8

乙的成績(環(huán))

6

7

9

7

9

10

8

7

7

10

1)經計算甲和乙的平均成績是8(環(huán)),請求出表中的a   ;

2)甲成績的中位數(shù)是   環(huán),乙成績的眾數(shù)是   環(huán);

3)若甲成績的方差是1.2,請求出乙成績的方差,判斷甲、乙兩人誰的成績更為穩(wěn)定?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖, AF平分∠BAC,BC⊥AF, 垂足為E,點D與點A關于點E對稱,PB分別與線段CF,AF相交于P,M

1)求證:AB=CD;

2)若∠BAC=2∠MPC,請你判斷∠F∠MCD的數(shù)量關系,并說明理由.

查看答案和解析>>

同步練習冊答案