【題目】如圖是一副眼鏡鏡片下半部分輪廓對應(yīng)的兩條拋物線關(guān)于y軸對稱.ABx軸,AB=4cm,最低點(diǎn)Cx軸上,高CH=1cm,BD=2cm.則右輪廓線DFE所在拋物線的函數(shù)解析式為__________________________________

【答案】y= x32

【解析】

B、D關(guān)于y軸對稱,CH=1cm,BD=2cm可得到D點(diǎn)坐標(biāo)為(1,1),由AB=4cm,最低點(diǎn)Cx軸上,則AB關(guān)于直線CH對稱,可得到左邊拋物線的頂點(diǎn)C的坐標(biāo)為(-30),于是得到右邊拋物線的頂點(diǎn)F的坐標(biāo)為(3,0),然后設(shè)頂點(diǎn)式利用待定系數(shù)法求拋物線的解析式.

解:∵高CH=1cm,BD=2cm,ABx軸,
BD關(guān)于y軸對稱,
D點(diǎn)坐標(biāo)為(1,1),
ABx軸,AB=4cm,最低點(diǎn)Cx軸上,
AB關(guān)于直線CH對稱,
∴左邊拋物線的頂點(diǎn)C的坐標(biāo)為(-3,0),
∴右邊拋物線的頂點(diǎn)F的坐標(biāo)為(3,0),
設(shè)右邊拋物線的解析式為y=ax-32,
D1,1)代入得1=a×1-32,解得a=,
故右邊拋物線的解析式為y=x-32
故答案為:y=x-32

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將平行四邊形ABCD的邊DC延長到點(diǎn)E,使CE=DC,連接AE,交BC于點(diǎn)F

1)求證:AC=BE;

2)若∠AFC=2D,連接ACBE.求證:四邊形ABEC是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=﹣x2+2x+3的頂點(diǎn)為D,它與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C

1)求頂點(diǎn)D的坐標(biāo);

2)求直線BC的解析式;

3)求△BCD的面積;

4)當(dāng)點(diǎn)P在直線BC上方的拋物線上運(yùn)動(dòng)時(shí),△PBC的面積是否存在最大值?若存在,請求出這個(gè)最大值,并且寫出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知反比例函數(shù)y=與一次函數(shù)y=x+b的圖象在第一象限相交于點(diǎn)A1,﹣k+4).

1)試確定這兩個(gè)函數(shù)的表達(dá)式;

2)求△AOB的面積;

3)直接寫出一次函數(shù)值大于反比例函數(shù)值的自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,D是等邊三角形ABC內(nèi)一點(diǎn),將線段AD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)60°,得到線段AE,連接CD,BE.

(1)求證:∠AEB=∠ADC;

(2)連接DE,若ADC=105°,求BED的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將兩個(gè)全等的直角三角形ABCDBE按圖方式擺放,其中,,點(diǎn)E落在AB上,DE所在直線交AC所在直線于點(diǎn)F

求證:;

若將圖中的繞點(diǎn)B按順時(shí)針方向旋轉(zhuǎn)角a,且,其他條件不變,如圖請你直接寫出DE的大小關(guān)系:______

若將圖的繞點(diǎn)B按順時(shí)針方向旋轉(zhuǎn)角,且,其他條件不變,如圖請你寫出此時(shí)AFEFDE之間的關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC內(nèi)接于⊙O,AB=AC,∠BAC=36°,過點(diǎn)A作ADBC,與ABC的平分線交于點(diǎn)D,BD與AC交于點(diǎn)E,與O交于點(diǎn)F.

(1)求DAF的度數(shù);

(2)求證:AE2=EFED;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線軸的負(fù)半軸于點(diǎn).點(diǎn)軸正半軸上一點(diǎn),點(diǎn)關(guān)于點(diǎn)的對稱點(diǎn)恰好落在拋物線上.過點(diǎn)軸的平行線交拋物線于另一點(diǎn).若點(diǎn)的橫坐標(biāo)為1,則的長為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道:有一內(nèi)角為直角的三角形叫做直角三角形.類似地我們定義:有一內(nèi)角為的三角形叫做半直角三角形.如圖,在平面直角坐標(biāo)系中,為原點(diǎn),,軸上的一個(gè)動(dòng)點(diǎn),、、按順時(shí)針方向排列),與經(jīng)過、、三點(diǎn)的交于點(diǎn),平分,連結(jié).顯然、是半直角三角形.

1)求證:是半直角三角形;

2)求證:;

3)若點(diǎn)的坐標(biāo)為,求的長;

4軸于點(diǎn),求△ACF與△BCA的面積之比.

查看答案和解析>>

同步練習(xí)冊答案